6 resultados para information product
em Universidad Politécnica de Madrid
Resumo:
Commercial computer-aided design systems support the geometric definition of product, but they lack utilities to support initial design stages. Typical tasks such as customer need capture, functional requirement formalization, or design parameter definition are conducted in applications that, for instance, support ?quality function deployment? and ?failure modes and effects analysis? techniques. Such applications are noninteroperable with the computer-aided design systems, leading to discontinuous design information flows. This study addresses this issue and proposes a method to enhance the integration of design information generated in the early design stages into a commercial computer-aided design system. To demonstrate the feasibility of the approach adopted, a prototype application was developed and two case studies were executed.
Resumo:
Software Configuration Management (SCM) techniques have been considered the entry point to rigorous software engineering, where multiple organizations cooperate in a decentralized mode to save resources, ensure the quality of the diversity of software products, and manage corporate information to get a better return of investment. The incessant trend of Global Software Development (GSD) and the complexity of implementing a correct SCM solution grow not only because of the changing circumstances, but also because of the interactions and the forces related to GSD activities. This paper addresses the role SCM plays in the development of commercial products and systems, and introduces a SCM reference model to describe the relationships between the different technical, organizational, and product concerns any software development company should support in the global market.
Resumo:
This research is concerned with the experimental software engineering area, specifically experiment replication. Replication has traditionally been viewed as a complex task in software engineering. This is possibly due to the present immaturity of the experimental paradigm applied to software development. Researchers usually use replication packages to replicate an experiment. However, replication packages are not the solution to all the information management problems that crop up when successive replications of an experiment accumulate. This research borrows ideas from the software configuration management and software product line paradigms to support the replication process. We believe that configuration management can help to manage and administer information from one replication to another: hypotheses, designs, data analysis, etc. The software product line paradigm can help to organize and manage any changes introduced into the experiment by each replication. We expect the union of the two paradigms in replication to improve the planning, design and execution of further replications and their alignment with existing replications. Additionally, this research work will contribute a web support environment for archiving information related to different experiment replications. Additionally, it will provide flexible enough information management support for running replications with different numbers and types of changes. Finally, it will afford massive storage of data from different replications. Experimenters working collaboratively on the same experiment must all have access to the different experiments.
Resumo:
There is no empirical evidence whatsoever to support most of the beliefs on which software construction is based. We do not yet know the adequacy, limits, qualities, costs and risks of the technologies used to develop software. Experimentation helps to check and convert beliefs and opinions into facts. This research is concerned with the replication area. Replication is a key component for gathering empirical evidence on software development that can be used in industry to build better software more efficiently. Replication has not been an easy thing to do in software engineering (SE) because the experimental paradigm applied to software development is still immature. Nowadays, a replication is executed mostly using a traditional replication package. But traditional replication packages do not appear, for some reason, to have been as effective as expected for transferring information among researchers in SE experimentation. The trouble spot appears to be the replication setup, caused by version management problems with materials, instruments, documents, etc. This has proved to be an obstacle to obtaining enough details about the experiment to be able to reproduce it as exactly as possible. We address the problem of information exchange among experimenters by developing a schema to characterize replications. We will adapt configuration management and product line ideas to support the experimentation process. This will enable researchers to make systematic decisions based on explicit knowledge rather than assumptions about replications. This research will output a replication support web environment. This environment will not only archive but also manage experimental materials flexibly enough to allow both similar and differentiated replications with massive experimental data storage. The platform should be accessible to several research groups working together on the same families of experiments.
Resumo:
Although the aim of empirical software engineering is to provide evidence for selecting the appropriate technology, it appears that there is a lack of recognition of this work in industry. Results from empirical research only rarely seem to find their way to company decision makers. If information relevant for software managers is provided in reports on experiments, such reports can be considered as a source of information for them when they are faced with making decisions about the selection of software engineering technologies. To bridge this communication gap between researchers and professionals, we propose characterizing the information needs of software managers in order to show empirical software engineering researchers which information is relevant for decision-making and thus enable them to make this information available. We empirically investigated decision makers? information needs to identify which information they need to judge the appropriateness and impact of a software technology. We empirically developed a model that characterizes these needs. To ensure that researchers provide relevant information when reporting results from experiments, we extended existing reporting guidelines accordingly.We performed an experiment to evaluate our model with regard to its effectiveness. Software managers who read an experiment report according to the proposed model judged the technology?s appropriateness significantly better than those reading a report about the same experiment that did not explicitly address their information needs. Our research shows that information regarding a technology, the context in which it is supposed to work, and most importantly, the impact of this technology on development costs and schedule as well as on product quality is crucial for decision makers.
Resumo:
Purpose – The purpose of this paper is to present a simulation‐based evaluation method for the comparison of different organizational forms and software support levels in the field of supply chain management (SCM). Design/methodology/approach – Apart from widely known logistic performance indicators, the discrete event simulation model considers explicitly coordination cost as stemming from iterative administration procedures. Findings - The method is applied to an exemplary supply chain configuration considering various parameter settings. Curiously, additional coordination cost does not always result in improved logistic performance. Influence factor variations lead to different organizational recommendations. The results confirm the high importance of (up to now) disregarded dimensions when evaluating SCM concepts and IT tools. Research limitations/implications – The model is based on simplified product and network structures. Future research shall include more complex, real world configurations. Practical implications – The developed method is designed for the identification of improvement potential when SCM software is employed. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and the method provides a comprehensive tool for strategic IT decision making. Originality/value – Reviewed literature is mostly focused on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but associated coordination cost has not been addressed by researchers.