6 resultados para informatics
em Universidad Politécnica de Madrid
Resumo:
Over the last years, and particularly in the context of the COMBIOMED network, our biomedical informatics (BMI) group at the Universidad Politecnica de Madrid has carried out several approaches to address a fundamental issue: to facilitate open access and retrieval to BMI resources —including software, databases and services. In this regard, we have followed various directions: a) a text mining-based approach to automatically build a “resourceome”, an inventory of open resources, b) methods for heterogeneous database integration —including clinical, -omics and nanoinformatics sources—; c) creating various services to provide access to different resources to African users and professionals, and d) an approach to facilitate access to open resources from research projects
Resumo:
Background. Over the last years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for Medical Informatics (MI) field, so that locating and accessing them currently remains a hard and time-consuming task. Description. We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources? names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different taxonomies by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the taxonomies. The classification algorithm identifies the categories associated to resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. Conclusions. We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contained 282 resources at the time of writing. We are continuing to expand the number of available resources by taking into account further publications as well as suggestions from users and resource developers.
Resumo:
In informatics there is one kind of complexity that is perceived by everyone. It is the complexity of a concrete, isolated object, normally situated completely within one of the branches universally recognized by the scientific and technical community. Examples of this are the complexity of integrated electronic circuits, the complexity of lgorithms and the complexity of software. The first complexity deals with the number of circuit components, the second with computation time and the third with the number of necessary mental discriminations. In arder to illustrate my point, I will take up the last complexity, which, m o reo ver, is the least well-known.
Resumo:
INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included.
Resumo:
Friedman’s article ‘What informatics is and isn’t’, presents a necessary and timely analysis of the field of informatics.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.