7 resultados para impulse matrix response

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a straightforward production pathway of polymer matrix composites with increased dielectric constant for dielectric elastomer actuators (DEAs). Up to date, the approach of using composites made of high dielectric constant ceramics and insulating polymers has not evidenced any improvement in the performance of DEA devices, mainly as a consequence of the ferroelectric nature of the employed ceramics. We propose here an unexplored alternative to these traditional fillers, introducing calcium copper titanate (CCTO) CaCu3Ti4O12, which has a giant dielectric constant making it very suitable for capacitive applications. All CCTO-polydimethylsiloxane (PDMS) composites developed display an improved electro-mechanical performance. The largest actuation improvement was achieved for the composite with 5.1 vol% of CCTO, having an increment in the actuation strain of about 100% together with a reduction of 25% in the electric field compared to the raw PDMS matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the cross-talk and its effects in the performance of a matrix array of piezoelectric elements is an important issue. This corresponds to the study of the cross mode of vibration of each one of the piezoelectric elements that form the ultrasonic array. The aim is to detect and measure the cross-talk that is generated for the cross mode of vibration. In order to accomplish this task, an array of 2x3 elements was designed and developed. This was constructed using 8 MHz piezoelectric ceramics. A number of configurations have been experimented, considering the excitation of an increasing number of elements, in order to detect and measure the propagation of wave interference. Initial results show the way cross-talk interferes the beam generated by the array, this causing attenuation of the main beam and other negative effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its small size and the restrictions on source and listener positions, the design of sound reproduction systems for car cabins is particularly cumbersome. In the present project the measurement of the impulse response between a single loudspeaker and a listener position, with special emphasis on the directional characteristics, will be examined. The propagation paths inside a car are very short, meaning that it is very difficult for the existing commercial measurement systems to resolve the different reflections arriving to the listener. This paper propose a first approach of an algorithm based on time difference of arrival along a measurement technique aiming at finding the reflections and their direction of arrival to the listener. To this end a circular microphone array at a known position is employed, along with Maximum-Length Sequences (MLS) measurement technique. The results are processed so as to extract the directional properties, demonstrate the physical limitations that can influence or prevent this detection in practice. Measurements were carried out in a free-field environment (anechoic chamber) making use of different panels closer around the microphone array. RESUMEN. El diseño de sistemas de reproducción de audio para cabinas de coche es especialmente complicado debido al reducido tamaño del espacio y las restricciones de los altavoces y posiciones de escucha de los ocupantes. En el presente proyecto, se examinan mediciones de la respuesta al impulso entre un altavoz y una posición de escucha con especial énfasis en las características direccionales. Los caminos de propagación de las ondas sonoras dentro de un coche son muy cortos, lo que hace difícil para los instrumentos de medida existentes en el mercado determinar las direcciones de llegada de las diferentes reflexiones que llegan a una posición de escucha. Este trabajo propone una primera aproximación de un algoritmo, basado en las diferencias temporales de llegada de una onda a diferentes puntos de medida, y una particular técnica de medida de la respuesta al impulso para obtener las direcciones de llegada de reflexiones a una posición de escucha. Para ello, se emplea una matriz circular de micrófonos en una posición conocida junto con la técnica de medida MLS (Maximum Length Sequence). Los resultados obtenidos son procesados para extraer la dirección de llegada de las reflexiones acústicas y encontrar las limitaciones que influyan en la detección de dichas reflexiones. Las mediciones se llevan a cabo en un entorno de campo libre y utilizando diferentes superficies reflectantes alrededor de la matriz de micrófonos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of porosity on the transverse mechanical properties of unidirectional fiber-reinforced composites is studied by means of computational micromechanics. The composite behavior is simulated by the finite element analysis of a representative volume element of the composite microstructure in which the random distribution of fibers and the voids are explicitly included. Two types of voids – interfiber voids and matrix voids – were included in the microstructure and the actual damage mechanisms in the composite, namely matrix and interface failure, were accounted for. It was found that porosity (in the range 1–5%) led to a large reduction in the transverse strength and the influence of both types of voids in the onset and propagation of damage throughout the microstructure was studied under transverse tension and compression. Finally, the failure locus of the composite lamina under transverse tension/compression and out-of-plane shear was obtained by means of computational micromechanics and compared with the predictions of Puck’s model and with experimental data available in the literature. The results show that the strength of composites is significantly reduced by the presence of voids

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides and flame retardants) in aquatic plants. Analytes were extracted by ultrasound assisted-matrix solid phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation. The method was validated for different aquatic plants (Typha angustifolia, Arundo donax and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g-1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g-1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts and therefore quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin and cypermethrin. The levels found ranged from 6 to 25 ng g-1 wet weight except for cypermethrin that was detected at 235 ng g-1 wet weight in Oryza sativa samples.