10 resultados para improving levels of literacy
em Universidad Politécnica de Madrid
Resumo:
En todo el mundo se ha observado un crecimiento exponencial en la incidencia de enfermedades crónicas como la hipertensión y enfermedades cardiovasculares y respiratorias, así como la diabetes mellitus, que causa un número de muertes cada vez mayor en todo el mundo (Beaglehole et al., 2008). En concreto, la prevalencia de diabetes mellitus (DM) está aumentando de manera considerable en todas las edades y representa un serio problema de salud mundial. La diabetes fue la responsable directa de 1,5 millones de muertes en 2012 y 89 millones de años de vida ajustados por discapacidad (AVAD) (OMS, 2014). Uno de los principales dilemas que suelen asociarse a la gestión de EC es la adherencia de los pacientes a los tratamientos, que representa un aspecto multifactorial que necesita asistencia en lo relativo a: educación, autogestión, interacción entre los pacientes y cuidadores y compromiso de los pacientes. Medir la adherencia del tratamiento es complicado y, aunque se ha hablado ampliamente de ello, aún no hay soluciones “de oro” (Reviews, 2002). El compromiso de los pacientes, a través de la participación, colaboración, negociación y a veces del compromiso firme, aumentan las oportunidades para una terapia óptima en la que los pacientes se responsabilizan de su parte en la ecuación de adherencia. Comprometer e involucrar a los pacientes diabéticos en las decisiones de su tratamiento, junto con expertos profesionales, puede ayudar a favorecer un enfoque centrado en el paciente hacia la atención a la diabetes (Martin et al., 2005). La motivación y atribución de poder de los pacientes son quizás los dos factores interventores más relevantes que afectan directamente a la autogestión de la atención a la diabetes. Se ha demostrado que estos dos factores desempeñan un papel fundamental en la adherencia a la prescripción, así como en el fomento exitoso de un estilo de vida sana y otros cambios de conducta (Heneghan et al., 2013). Un plan de educación personalizada es indispensable para proporcionarle al paciente las herramientas adecuadas que necesita para la autogestión efectiva de la enfermedad (El-Gayar et al. 2013). La comunicación efectiva es fundamental para proporcionar una atención centrada en el paciente puesto que influye en las conductas y actitudes hacia un problema de salud ((Frampton et al. 2008). En este sentido, la interactividad, la frecuencia, la temporalización y la adaptación de los mensajes de texto pueden promover la adherencia a un régimen de medicación. Como consecuencia, adaptar los mensajes de texto a los pacientes puede resultar ser una manera de hacer que las sugerencias y la información sean más relevantes y efectivas (Nundy et al. 2013). En este contexto, las tecnologías móviles en el ámbito de la salud (mHealth) están desempeñando un papel importante al conectar con pacientes para mejorar la adherencia a medicamentos recetados (Krishna et al., 2009). La adaptación de los mensajes de texto específicos de diabetes sigue siendo un área de oportunidad para mejorar la adherencia a la medicación y ofrecer motivación a adultos con diabetes. Sin embargo, se necesita más investigación para entender totalmente su eficacia. Los consejos de texto personalizados han demostrado causar un impacto positivo en la atribución de poder a los pacientes, su autogestión y su adherencia a la prescripción (Gatwood et al., 2014). mHealth se puede utilizar para ofrecer programas de asistencia de autogestión a los pacientes con diabetes y, al mismo tiempo, superar las dificultades técnicas y financieras que supone el tratamiento de la diabetes (Free at al., 2013). El objetivo principal de este trabajo de investigación es demostrar que un marco tecnológico basado en las teorías de cambios de conducta, aplicado al campo de la mHealth, permite una mejora de la adherencia al tratamiento en pacientes diabéticos. Como método de definición de una solución tecnológica, se han adoptado un conjunto de diferentes técnicas de conducta validadas denominado marco de compromiso de retroacción conductual (EBF, por sus siglas en inglés) para formular los mensajes, guiar el contenido y evaluar los resultados. Los estudios incorporan elementos del modelo transteórico (TTM, por sus siglas en inglés), la teoría de la fijación de objetivos (GST, por sus siglas en inglés) y los principios de comunicación sanitaria persuasiva y eficaz. Como concepto general, el modelo TTM ayuda a los pacientes a progresar a su próxima fase de conducta a través de mensajes de texto motivados específicos y permite que el médico identifique la fase actual y adapte sus estrategias individualmente. Además, se adoptan las directrices del TTM para fijar objetivos personalizados a un nivel apropiado a la fase de cambio del paciente. La GST encierra normas que van a ponerse en práctica para promover la intervención educativa y objetivos de pérdida de peso. Finalmente, los principios de comunicación sanitaria persuasiva y eficaz aplicados a la aparición de los mensajes se han puesto en marcha para aumentar la efectividad. El EBF tiene como objetivo ayudar a los pacientes a mejorar su adherencia a la prescripción y encaminarlos a una mejora general en la autogestión de la diabetes mediante mensajes de texto personalizados denominados mensajes de retroacción automáticos (AFM, por sus siglas en inglés). Después de una primera revisión del perfil, consistente en identificar características significativas del paciente basadas en las necesidades de tratamiento, actitudes y conductas de atención sanitaria, el sistema elige los AFM personalizados, los aprueba el médico y al final se transfieren a la interfaz del paciente. Durante el tratamiento, el usuario recopila los datos en dispositivos de monitorización de pacientes (PMD, por sus siglas en inglés) de una serie de dispositivos médicos y registros manuales. Los registros consisten en la toma de medicación, dieta y actividad física y tareas de aprendizaje y control de la medida del metabolismo. El compromiso general del paciente se comprueba al estimar el uso del sistema y la adherencia del tratamiento y el estado de los objetivos del paciente a corto y largo plazo. El módulo de análisis conductual, que consiste en una serie de reglas y ecuaciones, calcula la conducta del paciente. Tras lograr el análisis conductual, el módulo de gestión de AFM actualiza la lista de AFM y la configuración de los envíos. Las actualizaciones incluyen el número, el tipo y la frecuencia de mensajes. Los AFM los revisa periódicamente el médico que también participa en el perfeccionamiento del tratamiento, adaptado a la fase transteórica actual. Los AFM se segmentan en distintas categorías y niveles y los pacientes pueden ajustar la entrega del mensaje de acuerdo con sus necesidades personales. El EBF se ha puesto en marcha integrado dentro del sistema METABO, diseñado para facilitar al paciente diabético que controle sus condiciones relevantes de una manera menos intrusiva. El dispositivo del paciente se vincula en una plataforma móvil, mientras que una interfaz de panel médico permite que los profesionales controlen la evolución del tratamiento. Herramientas específicas posibilitan que los profesionales comprueben la adherencia del paciente y actualicen la gestión de envíos de AFM. El EBF fue probado en un proyecto piloto controlado de manera aleatoria. El principal objetivo era examinar la viabilidad y aceptación del sistema. Los objetivos secundarios eran también la evaluación de la eficacia del sistema en lo referente a la mejora de la adherencia, el control glucémico y la calidad de vida. Se reclutaron participantes de cuatro centros clínicos distintos en Europa. La evaluación del punto de referencia incluía datos demográficos, estado de la diabetes, información del perfil, conocimiento de la diabetes en general, uso de las plataformas TIC, opinión y experiencia con dispositivos electrónicos y adopción de buenas prácticas con la diabetes. La aceptación y eficacia de los criterios de evaluación se aplicaron para valorar el funcionamiento del marco tecnológico. El principal objetivo era la valoración de la eficacia del sistema en lo referente a la mejora de la adherencia. En las pruebas participaron 54 pacientes. 26 fueron asignados al grupo de intervención y equipados con tecnología móvil donde estaba instalado el EBF: 14 pacientes tenían T1DM y 12 tenían T2DM. El grupo de control estaba compuesto por 25 pa cientes que fueron tratados con atención estándar, sin el empleo del EBF. La intervención profesional tanto de los grupos de control como de intervención corrió a cargo de 24 cuidadores, entre los que incluían diabetólogos, nutricionistas y enfermeras. Para evaluar la aceptabilidad del sistema y analizar la satisfacción de los usuarios, a través de LimeSurvey, se creó una encuesta multilingüe tanto para los pacientes como para los profesionales. Los resultados también se recopilaron de los archivos de registro generados en los PMD, el panel médico profesional y las entradas de la base de datos. Los mensajes enviados hacia y desde el EBF y los archivos de registro del sistema y los servicios de comunicación se grabaron durante las cinco semanas del estudio. Se entregaron un total de 2795 mensajes, lo que supuso una media de 107,50 mensajes por paciente. Como se muestra, los mensajes disminuyen con el tiempo, indicando una mejora global de la adherencia al plan de tratamiento. Como se esperaba, los pacientes con T1DM recibieron más consejos a corto plazo, en relación a su estado. Del mismo modo, al ser el centro de T2DM en cambios de estilo de vida sostenible a largo plazo, los pacientes con T2DM recibieron más consejos de recomendación, en cuanto a dietas y actividad física. También se ha llevado a cabo una comparación de la adherencia e índices de uso para pacientes con T1DM y T2DM, entre la primera y la segunda mitad de la prueba. Se han observado resultados favorables para el uso. En lo relativo a la adherencia, los resultados denotaron una mejora general en cada dimensión del plan de tratamiento, como la nutrición y las mediciones de inserción de glucosa en la sangre. Se han llevado a cabo más estudios acerca del cambio a nivel educativo antes y después de la prueba, medidos tanto para grupos de control como de intervención. Los resultados indicaron que el grupo de intervención había mejorado su nivel de conocimientos mientras que el grupo de control mostró una leve disminución. El análisis de correlación entre el nivel de adherencia y las AFM ha mostrado una mejora en la adherencia de uso para los pacientes que recibieron los mensajes de tipo alertas, y unos resultados no significativos aunque positivos relacionados con la adherencia tanto al tratamiento que al uso correlacionado con los recordatorios. Por otra parte, los AFM parecían ayudar a los pacientes que no tomaban suficientemente en serio su tratamiento en el principio y que sí estaban dispuestos a responder a los mensajes recibidos. Aun así, los pacientes que recibieron demasiadas advertencias, comenzaron a considerar el envío de mensajes un poco estresante. El trabajo de investigación llevado a cabo al desarrollar este proyecto ofrece respuestas a las cuatro hipótesis de investigación que fueron la motivación para el trabajo. • Hipótesis 1 : es posible definir una serie de criterios para medir la adherencia en pacientes diabéticos. • Hipótesis 2: es posible diseñar un marco tecnológico basado en los criterios y teorías de cambio de conducta mencionados con anterioridad para hacer que los pacientes diabéticos se comprometan a controlar su enfermedad y adherirse a planes de atención. • Hipótesis 3: es posible poner en marcha el marco tecnológico en el sector de la salud móvil. • Hipótesis 4: es posible utilizar el marco tecnológico como solución de salud móvil en un contexto real y tener efectos positivos en lo referente a indicadores de control de diabetes. La verificación de cada hipótesis permite ofrecer respuesta a la hipótesis principal: La hipótesis principal es: es posible mejorar la adherencia diabética a través de un marco tecnológico mHealth basado en teorías de cambio de conducta. El trabajo llevado a cabo para responder estas preguntas se explica en este trabajo de investigación. El marco fue desarrollado y puesto en práctica en el Proyecto METABO. METABO es un Proyecto I+D, cofinanciado por la Comisión Europea (METABO 2008) que integra infraestructura móvil para ayudar al control, gestión y tratamiento de los pacientes con diabetes mellitus de tipo 1 (T1DM) y los que padecen diabetes mellitus de tipo 2 (T2DM). ABSTRACT Worldwide there is an exponential growth in the incidence of Chronic Diseases (CDs), such as: hypertension, cardiovascular and respiratory diseases, as well as diabetes mellitus, leading to rising numbers of deaths worldwide (Beaglehole et al. 2008). In particular, the prevalence of diabetes mellitus (DM) is largely increasing among all ages and constitutes a major worldwide health problem. Diabetes was directly responsible for 1,5 million deaths in 2012 and 89 million Disability-adjusted life year (DALYs) (WHO 2014). One of the key dilemmas often associated to CD management is the patients’ adherence to treatments, representing a multi-factorial aspect that requires support in terms of: education, self-management, interaction between patients and caregivers, and patients’ engagement. Measuring adherence is complex and, even if widely discussed, there are still no “gold” standards ((Giardini et al. 2015), (Costa et al. 2015). Patient’s engagement, through participation, collaboration, negotiation, and sometimes compromise, enhance opportunities for optimal therapy in which patients take responsibility for their part of the adherence equation. Engaging and involving diabetic patients in treatment decisions, along with professional expertise, can help foster a patient-centered approach to diabetes care (Martin et al. 2005). Patients’ motivation and empowerment are perhaps the two most relevant intervening factors that directly affect self-management of diabetes care. It has been demonstrated that these two factors play an essential role in prescription adherence, as well as for the successful encouragement of a healthy life-style and other behavioural changes (Heneghan et al. 2013). A personalised education plan is indispensable in order to provide the patient with the appropriate tools needed for the effective self-management of the disease (El-Gayar et al. 2013). Effective communication is at the core of providing patient-centred care since it influences behaviours and attitudes towards a health problem (Frampton et al. 2008). In this regard, interactivity, frequency, timing, and tailoring of text messages may promote adherence to a medication regimen. As a consequence, tailoring text messages to patients can constitute a way of making suggestions and information more relevant and effective (Nundy et al. 2013). In this context, mobile health technologies (mHealth) are playing significant roles in improving adherence to prescribed medications (Krishna et al. 2009). The tailoring of diabetes-specific text messages remains an area of opportunity to improve medication adherence and provide motivation to adults with diabetes but further research is needed to fully understand their effectiveness. Personalized text advices have proven to produce a positive impact on patients’ empowerment, self-management, and adherence to prescriptions (Gatwood et al. 2014). mHealth can be used for offering self-management support programs to diabetes patients and at the same time surmounting the technical and financial difficulties involved in diabetes treatment (Free et al. 2013). The main objective of this research work is to demonstrate that a technological framework, based on behavioural change theories, applied to mHealth domain, allows improving adherence treatment in diabetic patients. The framework, named Engagement Behavioural Feedback Framework (EBF), is built on top of validated behavioural techniques to frame messages, guide the definition of contents and assess outcomes: elements from the Transtheoretical Model (TTM), the Goal-Setting Theory (GST), Effective Health Communication (EHC) guidelines and Principles of Persuasive Technology (PPT) were incorporated. The TTM helps patients to progress to a next behavioural stage, through specific motivated text messages, and allow clinician’s identifying the current stage and tailor its strategies individually. Moreover, TTM guidelines are adopted to set customised goals at a level appropriate to the patient’s stage of change. The GST was used to build rules to be applied for enhancing educational intervention and weight loss objectives. Finally, the EHC guidelines and the PPT were applied to increase the effectiveness of messages. The EBF aims to support patients on improving their prescription adherence and persuade them towards a general improvement in diabetes self-management, by means of personalised text messages, named Automatic Feedback Messages (AFM). After a first profile screening, consisting in identifying meaningful patient characteristics based on treatment needs, attitudes and health care behaviours, customised AFMs are selected by the system, approved by the professional, and finally transferred into the patient interface. During the treatment, the user collects the data into a Patient Monitoring Device (PMD) from a set of medical devices and from manual inputs. Inputs consist in medication intake, diet and physical activity, metabolic measurement monitoring and learning tasks. Patient general engagement is checked by estimating the usage of the system and the adherence of treatment and patient goals status in the short and the long term period. The Behavioural Analysis Module, consisting in a set of rules and equations, calculates the patient’s behaviour. After behavioural analysis is accomplished, the AFM library and the dispatch setting are updated by the AFM Manager module. Updates include the number, the type and the frequency of messages. The AFMs are periodically supervised by the professional who also participates to the refinement of the treatment, adapted to the current transtheoretical stage. The AFMs are segmented in different categories and levels and patients can adjust message delivery in accordance with their personal needs. The EBF was integrated to the METABO system, designed to facilitate diabetic patients in managing their disease in a less intrusive approach. Patient device corresponds in a mobile platform, while a medical panel interface allows professionals to monitoring the treatment evolution. Specific tools allow professional to check patient adherence and to update the AFMs dispatch management. The EBF was tested in a randomised controlled pilot. The main objective was to examine the feasibility and acceptance of the system. Secondary objectives were also the assessment of the effectiveness of system in terms of adherence improvement, glycaemic control, and quality of life. Participants were recruited from four different clinical centres in Europe. The baseline assessment included demographics, diabetes status, profile information, knowledge about diabetes in general, usage of ICT platforms, opinion and experience about electronic devices and adoption of good practices with diabetes. Acceptance and the effectiveness evaluation criteria were applied to evaluate the performance of the technological framework. The main objective was the assessment of the effectiveness of system in terms of adherence improvement. Fifty-four patients participated on the trials. Twenty-six patients were assigned in the intervention group and equipped with mobile where the EBF was installed: 14 patients were T1DM and 12 were T2DM. The control group was composed of 25 patients that were treated through a standard care, without the usage of the EBF. Professional’s intervention for both intervention and control groups was carried out by 24 care providers, including endocrinologists, nutritionists, and nurses. In order to evaluate the system acceptability and analyse the users’ satisfaction, an online multi-language survey, using LimeSurvey, was produced for both patients and professionals. Results were also collected from the log-files generated in the PMDs, the professional medical panel and the entries of the data base. The messages sent to and from the EBF and the log-files of the system and communication services were recorded over 5 weeks of the study. A total of 2795 messages were submitted, representing an average of 107,50 messages per patient. As demonstrated, messages decrease over time indicating an overall improvement of the care plan’s adherence. As expected, T1DM patients were more loaded with short-term advices, in accordance with their condition. Similarly, being the focus of T2DM on long-term sustainable lifestyle changes, T2DM received more reminders advices, as for diet and physical activity. Favourable outcomes were observed for treatment and usage adherences of the intervention group: for both the adherence indices, results denoted a general improvement on each care plan’s dimension, such as on nutrition and blood glucose input measurements. Further studies were conducted on the change on educational level before and after the trial, measured for both control and intervention groups. The outcomes indicated the intervention group has improved its level of knowledge, while the control group denoted a low decrease. The correlation analysis between the level of adherences and the AFMs showed an improvement in usage adherence for patients who received warnings message, while non-significantly yet even positive indicators related to both treatment and usage adherence correlated with the Reminders. Moreover, the AFMs seemed to help those patients who did not take their treatment seriously enough in the beginning and who were willing to respond to the messages they received. Even though, patients who received too many Warnings, started to consider the message dispatch to be a bit stressful. The research work carried out in developing this research work provides responses to the four research hypothesis that were the motivation for the work: •Hypothesis 1: It is possible to define a set of criteria to measure adherence in diabetic patients. •Hypothesis 2: It is possible to design a technological framework, based on the aforementioned criteria and behavioural change theories, to engage diabetic patients in managing their disease and adhere to care plans. •Hypothesis 3: It is possible to implement the technological framework in the mobile health domain. •Hypothesis 4: It is possible to use the technological framework as a mobile health solution in a real context and have positive effects in terms of diabetes management indicators. The verification of each hypothesis allowed us to provide a response to the main hypothesis: The Main Hypothesis is: It is possible to improve diabetic adherence through a mHealth technological framework based on behavioural change theories. The work carried out to answer these questions is explained in this research work. The framework was developed and applied in the METABO project. METABO is an R&D project, co-funded by the European Commission (METABO 2008) that integrates mobile infrastructure for supporting the monitoring, management, and treatment of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients.
Resumo:
The effects of inclusion of pea hulls (PH) in the diet on growth performance, development of the gastrointestinal tract and nutrient retention were studied in broilers from 1 to 18d of age. There were a control diet based on low fibre ingredients (69.3 total dietary fibre (16.1g crude fibre/kg)) and three additional diets that resulted from the dilution of the basal diet with 25, 50 and 75g PH/kg (81.2, 93.2, and 105.1g total dietary fibre/kg diet, respectively). Each treatment was replicated six times and the experimental unit was a cage with 12 chicks. Growth performance, development of the gastrointestinal tract and the coefficients of total tract apparent retention (CTTAR) of nutrients were recorded at 6, 12 and 18d of age. In addition, jejunal morphology was measured at 12 and 18d and the coefficients of apparent ileal digestibility (CAID) of nutrients at 18d of age. Pea hulls inclusion affected all the parameters studied. The inclusion of 25 and 50g PH/kg diet improved growth performance as compared to the control diet. The relative weight (g/kg body weight) of proventriculus (P≤0.01), gizzard (P≤0.001) and ceca (P≤0.05) increased linearly as the level of PH in the diet increased. The inclusion of PH affected quadratically (P≤0.01) villus height:crypt depth ratio with the highest value shown at 25g PH/kg. In general, the CTTAR and CAID of nutrients increased linearly and quadratically (P≤0.05) with increasing levels of PH, showing maximum values with PH level between 25 and 50g/kg diet. We conclude that the size of the digestive organs increases with increasing levels of PH in the diet. In general, the best performance and nutrient digestibility values were observed with levels of PH within the range of 25 and 50g/kg. Therefore, young broilers have a requirement for a minimum amount of dietary fibre. When pea hulls are used as a source of fibre, the level of total dietary fibre required for optimal performance is within the range of 81.2–93.2g/kg diet (25.6–35.0g crude fibre/kg diet). An excess of total dietary fibre (above 93.2g/kg diet) might reduce nutrient digestibility and growth performance to values similar to those observed with the control diet.
Resumo:
• Objectives of HALA! • Main Activities • HALA! Magement Team • Participants • Intended Audience • Heritage in ATM and Automation • The new paradigm shift in Automation in ATM • Overall system performance as main driver for ATM Automation • The three interdependent dimensions for the paradigm change. • New roles assignment based on : • “best time” • “decision place” • “best player” • HALA! main research areas
Resumo:
KCNQ4 mutations underlie DFNA2, a subtype of autosomal dominant hearing loss. We had previously identified the pore-region p.G296S mutation that impaired channel activity in two manners: it greatly reduced surface expression and abolished channel function. Moreover, G296S mutant exerted a strong dominant-negative effect on potassium currents by reducing the channel expression at the cell surface representing the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. Here, we have investigated the pathogenic mechanism associated with all the described KCNQ4 mutations (F182L, W242X, E260K, D262V, L274H, W276S, L281S, G285C, G285S and G321S) that are located in different domains of the channel protein. F182L mutant showed a wild type-like cell-surface distribution in transiently transfected NIH3T3 fibroblasts and the recorded currents in Xenopus oocytes resembled those of the wild-type. The remaining KCNQ4 mutants abolished potassium currents, but displayed distinct levels of defective cell-surface expression in NIH3T3 as quantified by flow citometry. Co-localization studies revealed these mutants were retained in the ER, unless W242X, which showed a clear co-localization with Golgi apparatus. Interestingly, this mutation results in a truncated KCNQ4 protein at the S5 transmembrane domain, before the pore region, that escapes the protein quality control in the ER but does not reach the cell surface at normal levels. Currently we are investigating the trafficking behaviour and electrophysiological properties of several KCNQ4 truncated proteins artificially generated in order to identify specific motifs involved in channel retention/exportation. Altogether, our results indicate that a defect in KCNQ4 trafficking is the common mechanism underlying DFNA2
Resumo:
The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.
Resumo:
We show a cluster based routing protocol in order to improve the convergence of the clusters and of the network it is proposed to use a backup cluster head. The use of a event discrete simulator is used for the implementation and the simulation of a hierarchical routing protocol called the Backup Cluster Head Protocol (BCHP). Finally it is shown that the BCHP protocol improves the convergence and availability of the network through a comparative analysis with the Ad Hoc On Demand Distance Vector (AODV)[1] routing protocol and Cluster Based Routing Protocol (CBRP)[2]
Resumo:
Water balance simulation in cropping systems is a very useful tool to study how water can be used efficiently. However this requires that models simulate an accurate water balance. Comparing model results with field observations will provide information on the performance of the models. The objective of this study was to test the performance of DSSAT model in simulating the water balance by comparing the simulations with observed measurements. The soil water balance in DSSAT uses a one dimensional ?tipping bucket? soil water balance approach where available soil water is determined by the drained upper limit (DUL), lower limit (LL) and saturated water content (SAT). A continuous weighing lysimeter was used to get the observed values of drainage and evapotranspiration (ET). An automated agrometeorological weather station close to the lisymeter was also used to record the climatic data. The model simulated accurately the soil water content after the optimization of the soil parameters. However it was found the inability of the model to capture small changes in daily drainage and ET. For that reason simulated cumulative values had larger errors as the time passed by. These results suggested the need to compare outputs of DSSAT and some hydrological model that simulates soil water movement with a more mechanistic approach. The comparison of the two models will allow us to find which mechanism can be modified or incorporated in DSSAT model to improve the simulations.
Resumo:
Evaluar la asociación entre los niveles físicos de la aptitud, de calidad relacionada con la salud de la vida (CVRS) y la obesidad sarcopénica
Resumo:
Soccer participation worldwide is increasing and every club try to discover new talents. It is well know that there is an important correlation between body composition (BC) and talent detection (TD) and when coaches and selectors choose players, they tend to choose them with optimum BC.
Resumo:
An experiment was conducted to investigate the effects of increasing the level of two sources of fibrous by-products, orange pulp (OP) and carob meal (CM), in iso-NDF growing-finishing pig diets on nutrient balance, slurry composition and potential ammonia (NH3) and methane (CH4) emissions. Thirty pigs (85.4 ± 12.3 kg) were fed five iso-nutritive diets: a commercial control wheat/barley (C) and four experimental diets including two sources of fibrous by-products (OP and CM) and two dietary levels (75 and 150 g/kg) in a 2 × 2 factorial arrangement. After a 14-day adaptation period, faeces and urine were collected separately for 7 days to measure nutrient digestibility and the excretory patterns of N from pigs (6 replicates per diet) housed individually in metabolic pens. For each animal, the derived NH3 and CH4 emissions were measured in samples of slurry over an 11- and 100-day storage periods, respectively. Source and level of the fibrous by-products affected digestion efficiency in a different way as the coefficients of total tract apparent digestibility (CTTAD) for dry matter (DM), organic matter (OM), fibre fractions and gross energy increased with OP but decreased with CM (P < 0.05). Crude protein CTTAD decreased with the inclusion of both sources of fibre, being lower at the highest dietary level. Faecal concentration of fibre fractions increased (P < 0.05) with the level of inclusion of CM but decreased with that of OP (P < 0.01). High dietary level for both sources of fibre increased (P < 0.02) CP faecal content but urine N content decreased (from 205 to 168 g/kg DM, P < 0.05) in all the fibre-supplemented compared to C diet. Additionally, the proportions of undigested dietary, water soluble, and bacterial and endogenous debris of faecal N excretion were not affected by treatments. The initial slurry characteristics did not differ among different fibre sources and dietary levels, except pH, which decreased at the highest by-product inclusion levels. Ammonia emission per kg of slurry was lower in all the fibre-supplemented diets than in C diet (from 2.44 to 1.81 g, P < 0.05). Additionally, slurries from the highest dietary level of by-products tended (P < 0.06) to emit less NH3 per kg of initial total Kjeldahl N and showed a lower B0, independently of the fibre source. Thus, the fibre sources and their dietary levels affected pig nutrient digestion and composition of urine and faeces, showing potential to decrease NH3 and CH4 emissions at high levels of inclusion, independently of type of fibre.