4 resultados para implementing evidence in practice
em Universidad Politécnica de Madrid
Resumo:
Although the computational complexity of the logic underlying the standard OWL 2 for the Web Ontology Language (OWL) appears discouraging for real applications, several contributions have shown that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far less complex than is suggested by the established theoretical complexity bound, which reflects the worstcase scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However, it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding of practical complexity. We also provide and discuss some initial empirical results with HERMIT on prominent ontologies
Resumo:
The hot-spot phenomenon is a relatively frequent problem in current photovoltaic generators. It entails both a risk for the photovoltaic module's lifetime and a decrease in its operational efficiency. Nevertheless, there is still a lack of widely accepted procedures for dealing with them in practice. This paper presents the IES UPM observations on 200 affected modules. Visual and infrared inspection, electroluminescence, peak power and operating voltage tests have been accomplished. Hot-spot observation procedures and well defined acceptance and rejection criteria are proposed, addressing both the lifetime and the operational efficiency of the modules. The operating voltage has come out as the best parameter to control effective efficiency losses for the affected modules. This procedure is oriented to its possible application in contractual frameworks.
Resumo:
Workflow reuse is a major benefit of workflow systems and shared workflow repositories, but there are barely any studies that quantify the degree of reuse of workflows or the practical barriers that may stand in the way of successful reuse. In our own work, we hypothesize that defining workflow fragments improves reuse, since end-to-end workflows may be very specific and only partially reusable by others. This paper reports on a study of the current use of workflows and workflow fragments in labs that use the LONI Pipeline, a popular workflow system used mainly for neuroimaging research that enables users to define and reuse workflow fragments. We present an overview of the benefits of workflows and workflow fragments reported by users in informal discussions. We also report on a survey of researchers in a lab that has the LONI Pipeline installed, asking them about their experiences with reuse of workflow fragments and the actual benefits they perceive. This leads to quantifiable indicators of the reuse of workflows and workflow fragments in practice. Finally, we discuss barriers to further adoption of workflow fragments and workflow reuse that motivate further work.
Resumo:
Several models for context-sensitive analysis of modular programs have been proposed, each with different characteristics and representing different trade-offs. The advantage of these context-sensitive analyses is that they provide information which is potentially more accurate than that provided by context-free analyses. Such information can then be applied to validating/debugging the program and/or to specializing the program in order to obtain important performance improvements. Some very preliminary experimental results have also been reported for some of these models which provided initial evidence on their potential. However, further experimentation, which is needed in order to understand the many issues left open and to show that the proposed modes scale and are usable in the context of large, real-life modular programs, was left as future work. The aim of this paper is two-fold. On one hand we provide an empirical comparison of the different models proposed in previous work, as well as experimental data on the different choices left open in those designs. On the other hand we explore the scalability of these models by using larger modular programs as benchmarks. The results have been obtained from a realistic implementation of the models, integrated in a production-quality compiler (CiaoPP/Ciao). Our experimental results shed light on the practical implications of the different design choices and of the models themselves. We also show that contextsensitive analysis of modular programs is indeed feasible in practice, and that in certain critical cases it provides better performance results than those achievable by analyzing the whole program at once, specially in terms of memory consumption and when reanalyzing after making changes to a program, as is often the case during program development.