5 resultados para image representation
em Universidad Politécnica de Madrid
Resumo:
Este proyecto, titulado “Caracterización de colectores para concentración fotovoltaica”, consiste en una aplicación en Labview para obtener las características de los elementos ópticos utilizados en sistemas de concentración fotovoltaica , atendiendo a la distribución espacial del foco de luz concentrado que generan. Un sistema de concentración fotovoltaica utiliza un sistema óptico para transmitir la radiación luminosa a la célula solar aumentando la densidad de potencia luminosa. Estos sistemas ópticos están formados por espejos o lentes para recoger la radiación incidente en ellos y concentrar el haz de luz en una superficie mucho menor. De esta manera se puede reducir el área de material semiconductor necesario, lo que conlleva una importante reducción del coste del sistema. Se pueden distinguir diferentes sistemas de concentración dependiendo de la óptica que emplee, la estructura del receptor o el rango de concentración. Sin embargo, ya que el objetivo es analizar la distribución espacial, diferenciaremos dos tipos de concentradores dependiendo de la geometría que presenta el foco de luz. El concentrador lineal o cilíndrico que enfoca sobre una línea, y el concentrador de foco puntual o circular que enfoca la luz sobre un punto. Debido a esta diferencia el análisis en ambos casos se realizará de forma distinta. El análisis se realiza procesando una imagen del foco tomada en el lugar del receptor, este método se llama LS-CCD (Difusión de luz y captura con CCD). Puede utilizarse en varios montajes dependiendo si se capta la imagen por reflexión o por transmisión en el receptor. En algunos montajes no es posible captar la imagen perpendicular al receptor por lo que la aplicación realizará un ajuste de perspectiva para obtener el foco con su forma original. La imagen del foco ofrece información detallada acerca de la uniformidad del foco mediante el mapa de superficie, que es una representación en 3D de la imagen pero que resulta poco manejable. Una representación más sencilla y útil es la que ofrecen los llamados “perfiles de intensidad”. El perfil de intensidad o distribución de la irradiancia que representa la distribución de la luz para cada distancia al centro, y el perfil acumulado o irradiancia acumulada que representa la luz contenida en relación también al centro. Las representaciones de estos perfiles en el caso de un concentrador lineal y otro circular son distintas debido a su diferente geometría. Mientras que para un foco lineal se expresa el perfil en función de la semi-anchura del receptor, para uno circular se expresa en función del radio. En cualquiera de los casos ofrecen información sobre la uniformidad y el tamaño del foco de luz necesarios para diseñar el receptor. El objetivo de este proyecto es la creación de una aplicación software que realice el procesado y análisis de las imágenes obtenidas del foco de luz de los sistemas ópticos a caracterizar. La aplicación tiene una interfaz sencilla e intuitiva para que pueda ser empleada por cualquier usuario. Los recursos necesarios para realizar el proyecto son: un PC con sistema operativo Windows, el software Labview 8.6 Professional Edition y los módulos NI Vision Development Module (para trabajar con imágenes) y NI Report Generation Toolkit (para realizar reportes y guardar datos de la aplicación). ABSTRACT This project, called “Characterization of collectors for concentration photovoltaic systems”, consists in a Labview application to obtain the characteristics of the optical elements used in photovoltaic concentrator, taking into account the spatial distribution of concentrated light source generated. A concentrator photovoltaic system uses an optical system to transmit light radiation to the solar cell by increasing the light power density. This optical system are formed by mirrors or lenses to collect the radiation incident on them and focus the beam of light in a much smaller surface area. In this way you can reduce the area of semiconductor material needed, which implies a significant reduction in system cost. There are different concentration systems depending on the optics used, receptor structure or concentration range. However, as the aim is to analyze the spatial distribution, distinguish between two types of concentrators depending on the geometry that has the light focus. The linear or cylindrical concentrator that focused on a line, and the circular concentrator that focused light onto a point. Because this difference in both cases the analysis will be carried out differently. The analysis is performed by processing a focus image taken at the receiver site, this method is called “LS-CCD” (Light Scattering and CCD recording). Can be used in several mountings depending on whether the image is captured by reflection or transmission on the receiver. In some mountings it is not possible to capture the image perpendicular to the receivers so that the application makes an adjustment of perspective to get the focus to its original shape. The focus image provides detail information about the uniformity of focus through the surface map, which is a 3D image representation but it is unwieldy. A simple and useful representation is provided by so called “intensity profiles”. The intensity profile or irradiance distribution which represents the distribution of light to each distance to the center. The accumulated profile or accumulated irradiance that represents the cumulative light contained in relation also to the center. The representation of these profiles in the case of a linear and a circular concentrator are different due to their distinct geometry. While for a line focus profile is expressed in terms of semi-width of the receiver, for a circular concentrator is expressed in terms of radius. In either case provides information about the uniformity and size of focus needed to design the receiver. The objective of this project is the creation of a software application to perform processing and analysis of images obtained from light source of optical systems to characterize.The application has a simple and a intuitive interface so it can be used for any users. The resources required for the project are: a PC with Windows operating system, LabVIEW 8.6 Professional Edition and the modules NI Vision Development Module (for working with images) and NI Report Generation Toolkit (for reports and store application data .)
Resumo:
We present a framework for the analysis of the decoding delay in multiview video coding (MVC). We show that in real-time applications, an accurate estimation of the decoding delay is essential to achieve a minimum communication latency. As opposed to single-view codecs, the complexity of the multiview prediction structure and the parallel decoding of several views requires a systematic analysis of this decoding delay, which we solve using graph theory and a model of the decoder hardware architecture. Our framework assumes a decoder implementation in general purpose multi-core processors with multi-threading capabilities. For this hardware model, we show that frame processing times depend on the computational load of the decoder and we provide an iterative algorithm to compute jointly frame processing times and decoding delay. Finally, we show that decoding delay analysis can be applied to design decoders with the objective of minimizing the communication latency of the MVC system.
Resumo:
Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.
Resumo:
La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.
Resumo:
The structural connectivity of the brain is considered to encode species-wise and subject-wise patterns that will unlock large areas of understanding of the human brain. Currently, diffusion MRI of the living brain enables to map the microstructure of tissue, allowing to track the pathways of fiber bundles connecting the cortical regions across the brain. These bundles are summarized in a network representation called connectome that is analyzed using graph theory. The extraction of the connectome from diffusion MRI requires a large processing flow including image enhancement, reconstruction, segmentation, registration, diffusion tracking, etc. Although a concerted effort has been devoted to the definition of standard pipelines for the connectome extraction, it is still crucial to define quality assessment protocols of these workflows. The definition of quality control protocols is hindered by the complexity of the pipelines under test and the absolute lack of gold-standards for diffusion MRI data. Here we characterize the impact on structural connectivity workflows of the geometrical deformation typically shown by diffusion MRI data due to the inhomogeneity of magnetic susceptibility across the imaged object. We propose an evaluation framework to compare the existing methodologies to correct for these artifacts including whole-brain realistic phantoms. Additionally, we design and implement an image segmentation and registration method to avoid performing the correction task and to enable processing in the native space of diffusion data. We release PySDCev, an evaluation framework for the quality control of connectivity pipelines, specialized in the study of susceptibility-derived distortions. In this context, we propose Diffantom, a whole-brain phantom that provides a solution to the lack of gold-standard data. The three correction methodologies under comparison performed reasonably, and it is difficult to determine which method is more advisable. We demonstrate that susceptibility-derived correction is necessary to increase the sensitivity of connectivity pipelines, at the cost of specificity. Finally, with the registration and segmentation tool called regseg we demonstrate how the problem of susceptibility-derived distortion can be overcome allowing data to be used in their original coordinates. This is crucial to increase the sensitivity of the whole pipeline without any loss in specificity.