3 resultados para hydroxymethylglutaryl coenzyme A reductase inhibitor

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently put forth a model of a protochlorophyllide (Pchlide) light-harvesting complex operative during angiosperm seedling de-etiolation (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999) Nature 397, 80–84). This model, which was based on in vitro reconstitution experiments with zinc analogs of Pchlide a and Pchlide b and the two NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, of barley, predicted a 5-fold excess of Pchlide b, relative to Pchlide a, in the prolamellar body of etioplasts. Recent work (Scheumann, V., Klement, H., Helfrich, M., Oster, U., Schoch, S., and Rüdiger, W. (1999) FEBS Lett. 445, 445–448), however, contradicted this model and reported that Pchlide b would not be present in etiolated plants. Here we demonstrate that Pchlide b is an abundant pigment in barley etioplasts but is rather metabolically unstable. It is rapidly converted to Pchlide a by virtue of 7-formyl reductase activity, an enzyme that had previously been implicated in the chlorophyll (Chl) b to Chl a reaction cycle. Our findings suggest that etiolated plants make use of 7-formyl reductase to fine tune the levels of Pchlide b and Pchlidea and thereby may regulate the steady-state level of light-harvesting POR-Pchlide comple

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing nitrogen (N) use efficiency during crop production is paramount both from an economic and environmental perspective. A proposed measure to achieve it is to split the addition of fertilizers with more than on application. For a winter crop under Mediterranean climatic conditions, the most common application pattern consists of a basal fertilization (October-November) an a top-dressing (February-March).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the mitigation strategies to prevent nitrogen (N) losses from ureic fertilizers, urease inhibitors (UIs) have been demonstrated to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, some field experiments have also shown its effectiveness in reducing nitrous oxide (N2O) losses from fertilized soils under conditions of low soil moisture. An incubation experiment was carried out with the aim of assessing the main biotic mechanisms behind N2O emissions once that the UIs N-(n-butyl) thiophosphoric triamid (NBPT) and phenil phosphorodiamidate (PPDA) were applied with Urea (U) under different soil moisture conditions (40, 60 and 80 % water-filled pore space, WFPS). In the same study we tried to analyze to what extent soil WFPS regulates the effect of these inhibitors on N2O emissions. The use of PPDA in our study allowed us to compare the effect of NBPT with that of another commercially available urease inhibitor, aiming to see if the results were inhibitor-specific or not. Based on the results from this experiment, a WFPS (i.e. 60 %) was chosen for a second study (i.e. mesocosm experiment) aiming to assess the efficiency of the UIs to indirectly affect N2O emissions through influencing the pool of soil mineral N. The N2O emissions at 40 % WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80 % WFPS. When compared to U alone, NBPT+U reduced the N2O emissions at 60 % WFPS but had no effect at 80 % WFPS. The application of PPDA significantly increased the emissions with respect to U at 80 % WFPS whereas no significant effect was found at 60 %. At 80 % WFPS, denitrification was the main source of N2O emissions for all treatments. In the mesocosm study, the application of NBPT+U was an effective strategy to reduce N2O emissions (75 % reduction compared to U alone), due to a lower soil ammonium (NH4 +) content induced by the inhibitor. These results suggest that adequate management of the UI NBPT could provide, under certain soil conditions, an opportunity for mitigation of N2O emissions from fertilized soils.