3 resultados para human population

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water is a vital resource, but also a critical limiting factor for economic and social development in many parts of the world. The recent rapid growth in human population and water use for social and economic development is increasing the pressure on water resources and the environment, as well as leading to growing conflicts among competing water use sectors (agriculture, urban, tourism, industry) and regions (Gleick et al., 2009; World Bank, 2006). In Spain, as in many other arid and semi-arid regions affected by drought and wide climate variability, irrigated agriculture is responsible for most consumptive water use and plays an important role in sustaining rural livelihoods (Varela-Ortega, 2007). Historically, the evolution of irrigation has been based on publicly-funded irrigation development plans that promoted economic growth and improved the socio-economic conditions of rural farmers in agrarian Spain, but increased environmental damage and led to excessive and inefficient exploitation of water resources (Garrido and Llamas, 2010; Varela-Ortega et al., 2010). Currently, water policies in Spain focus on rehabilitating and improving the efficiency of irrigation systems, and are moving from technocratic towards integrated water management strategies driven by the European Union (EU) Water Framework Directive (WFD).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El suelo salino impone un estrés abiótico importante que causa graves problemas en la agricultura ya que la mayoría de los cultivos se ven afectados por la salinidad debido a efectos osmóticos y tóxicos. Por ello, la contaminación y la escasez de agua dulce, la salinización progresiva de tierras y el aumento exponencial de la población humana representan un grave problema que amenaza la seguridad alimentaria mundial para las generaciones futuras. Por lo tanto, aumentar la tolerancia a la salinidad de los cultivos es un objetivo estratégico e ineludible para garantizar el suministro de alimentos en el futuro. Mantener una óptima homeostasis de K+ en plantas que sufren estrés salino es un objetivo importante en el proceso de obtención de plantas tolerantes a la salinidad. Aunque el modelo de la homeostasis de K+ en las plantas está razonablemente bien descrito en términos de entrada de K+, muy poco se sabe acerca de los genes implicados en la salida de K+ o de su liberación desde la vacuola. En este trabajo se pretende aclarar algunos de los mecanismos implicados en la homeostasis de K+ en plantas. Para ello se eligió la briofita Physcomitrella patens, una planta no vascular de estructura simple y de fase haploide dominante que, entre muchas otras cualidades, hacen que sea un modelo ideal. Lo más importante es que no sólo P. patens es muy tolerante a altas concentraciones de Na+, sino que también su posición filogenética en la evolución de las plantas abre la posibilidad de estudiar los cambios claves que, durante el curso de la evolución, se produjeron en las diversas familias de los transportadores de K+. Se han propuesto varios transportadores de cationes como candidatos que podrían tener un papel en la salida de K+ o su liberación desde la vacuola, especialmente miembros de la familia CPA2 que contienen las familias de transportadores KEA y CHX. En este estudio se intenta aumentar nuestra comprensión de las funciones de los transportadores de CHX en las células de las plantas usando P. patens, como ya se ha dicho. En esta especie, se han identificado cuatro genes CHX, PpCHX1-4. Dos de estos genes, PpCHX1 y PpCHX2, se expresan aproximadamente al mismo nivel que el gen PpACT5, y los otros dos genes muestran una expresión muy baja. La expresión de PpCHX1 y PpCHX2 en mutantes de Escherichia coli defectivos en el transporte de K+ restauraron el crecimiento de esta cepa en medios con bajo contenido de K+, lo que viii sugiere que la entrada de K+ es energizada por un mecanismo de simporte con H+. Por otra parte, estos transportadores suprimieron el defecto asociado a la mutación kha1 en Saccharomyces cerevisiae, lo que sugiere que podrían mediar un antiporte en K+/H+. La proteína PpCHX1-GFP expresada transitoriamente en protoplastos de P. patens co-localizó con un marcador de Golgi. En experimentos similares, la proteína PpCHX2-GFP localizó aparentemente en la membrana plasmática y tonoplasto. Se construyeron las líneas mutantes simples de P. patens ΔPpchx1 y ΔPpchx2, y también el mutante doble ΔPpchx2 ΔPphak1. Los mutantes simples crecieron normalmente en todas las condiciones ensayadas y mostraron flujos de entrada normales de K+ y Rb+; la mutación ΔPpchx2 no aumentó el defecto de las plantas ΔPphak1. En experimentos a largo plazo, las plantas ΔPpchx2 mostraron una retención de Rb+ ligeramente superior que las plantas silvestres, lo que sugiere que PpCHX2 promueve la transferencia de Rb+ desde la vacuola al citosol o desde el citosol al medio externo, actuando en paralelo con otros transportadores. Sugerimos que transportadores de K+ de varias familias están involucrados en la homeostasis de pH de orgánulos ya sea mediante antiporte K+/H+ o simporte K+-H+.ix ABSTRACT Soil salinity is a major abiotic stress causing serious problems in agriculture as most crops are affected by it. Moreover, the contamination and shortage of freshwater, progressive land salinization and exponential increase of human population aggravates the problem implying that world food security may not be ensured for the next generations. Thus, a strategic and an unavoidable goal would be increasing salinity tolerance of plant crops to secure future food supply. Maintaining an optimum K+ homeostasis in plants under salinity stress is an important trait to pursue in the process of engineering salt tolerant plants. Although the model of K+ homeostasis in plants is reasonably well described in terms of K+ influx, very little is known about the genes implicated in K+ efflux or release from the vacuole. In this work, we aim to clarify some of the mechanisms involved in K+ homeostasis in plants. For this purpose, we chose the bryophyte plant Physcomitrella patens, a nonvascular plant of simple structure and dominant haploid phase that, among many other characteristics, makes it an ideal model. Most importantly, not only P. patens is very tolerant to high concentrations of Na+, but also its phylogenetic position in land plant evolution opens the possibility to study the key changes that occurred in K+ transporter families during the course of evolution. Several cation transporter candidates have been proposed to have a role in K+ efflux or release from the vacuole especially members of the CPA2 family which contains the KEA and CHX transporter families. We intended in this study to increase our understanding of the functions of CHX transporters in plant cells using P. patens, in which four CHX genes have been identified, PpCHX1-4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K+-containing media, suggesting they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated to the kha1 mutation in Saccharomyces cerevisiae, which suggest that they might mediate K+/H+ antiport. PpCHX1-GFP protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma x membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed a slightly higher Rb+ retention than wild type plants, which suggests that PpCHX2 mediates the transfer of Rb+ from either the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K+-H+ symport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P, and phosphatase activity), and summarizing them in a multifunctionality index (M). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43 and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2–80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced.