5 resultados para historical records
em Universidad Politécnica de Madrid
Resumo:
El retroceso de las costas acantiladas es un fenómeno muy extendido sobre los litorales rocosos expuestos a la incidencia combinada de los procesos marinos y meteorológicos que se dan en la franja costera. Este fenómeno se revela violentamente como movimientos gravitacionales del terreno esporádicos, pudiendo causar pérdidas materiales y/o humanas. Aunque el conocimiento de estos riesgos de erosión resulta de vital importancia para la correcta gestión de la costa, el desarrollo de modelos predictivos se encuentra limitado desde el punto de vista geomorfológico debido a la complejidad e interacción de los procesos de desarrollo espacio-temporal que tienen lugar en la zona costera. Los modelos de predicción publicados son escasos y con importantes inconvenientes: a) extrapolación, extienden la información de registros históricos; b) empíricos, sobre registros históricos estudian la respuesta al cambio de un parámetro; c) estocásticos, determinan la cadencia y magnitud de los eventos futuros extrapolando las distribuciones de probabilidad extraídas de catálogos históricos; d) proceso-respuesta, de estabilidad y propagación del error inexplorada; e) en Ecuaciones en Derivadas Parciales, computacionalmente costosos y poco exactos. La primera parte de esta tesis detalla las principales características de los modelos más recientes de cada tipo y, para los más habitualmente utilizados, se indican sus rangos de aplicación, ventajas e inconvenientes. Finalmente como síntesis de los procesos más relevantes que contemplan los modelos revisados, se presenta un diagrama conceptual de la recesión costera, donde se recogen los procesos más influyentes que deben ser tenidos en cuenta, a la hora de utilizar o crear un modelo de recesión costera con el objetivo de evaluar la peligrosidad (tiempo/frecuencia) del fenómeno a medio-corto plazo. En esta tesis se desarrolla un modelo de proceso-respuesta de retroceso de acantilados costeros que incorpora el comportamiento geomecánico de materiales cuya resistencia a compresión no supere los 5 MPa. El modelo simula la evolución espaciotemporal de un perfil-2D del acantilado que puede estar formado por materiales heterogéneos. Para ello, se acoplan la dinámica marina: nivel medio del mar, cambios en el nivel medio del lago, mareas y oleaje; con la evolución del terreno: erosión, desprendimiento rocoso y formación de talud de derrubios. El modelo en sus diferentes variantes es capaz de incluir el análisis de la estabilidad geomecánica de los materiales, el efecto de los derrubios presentes al pie del acantilado, el efecto del agua subterránea, la playa, el run-up, cambios en el nivel medio del mar o cambios (estacionales o interanuales) en el nivel medio de la masa de agua (lagos). Se ha estudiado el error de discretización del modelo y su propagación en el tiempo a partir de las soluciones exactas para los dos primeros periodos de marea para diferentes aproximaciones numéricas tanto en tiempo como en espacio. Los resultados obtenidos han permitido justificar las elecciones que minimizan el error y los métodos de aproximación más adecuados para su posterior uso en la modelización. El modelo ha sido validado frente a datos reales en la costa de Holderness, Yorkshire, Reino Unido; y en la costa norte del lago Erie, Ontario, Canadá. Los resultados obtenidos presentan un importante avance en los modelos de recesión costera, especialmente en su relación con las condiciones geomecánicas del medio, la influencia del agua subterránea, la verticalización de los perfiles rocosos y su respuesta ante condiciones variables producidas por el cambio climático (por ejemplo, nivel medio del mar, cambios en los niveles de lago, etc.). The recession of coastal cliffs is a widespread phenomenon on the rocky shores that are exposed to the combined incidence of marine and meteorological processes that occur in the shoreline. This phenomenon is revealed violently and occasionally, as gravitational movements of the ground and can cause material or human losses. Although knowledge of the risks of erosion is vital for the proper management of the coast, the development of cliff erosion predictive models is limited by the complex interactions between environmental processes and material properties over a range of temporal and spatial scales. Published prediction models are scarce and present important drawbacks: extrapolation, that extend historical records to the future; empirical, that based on historical records studies the system response against the change in one parameter; stochastic, that represent of cliff behaviour based on assumptions regarding the magnitude and frequency of events in a probabilistic framework based on historical records; process-response, stability and error propagation unexplored; PDE´s, highly computationally expensive and not very accurate. The first part of this thesis describes the main features of the latest models of each type and, for the most commonly used, their ranges of application, advantages and disadvantages are given. Finally as a synthesis of the most relevant processes that include the revised models, a conceptual diagram of coastal recession is presented. This conceptual model includes the most influential processes that must be taken into account when using or creating a model of coastal recession to evaluate the dangerousness (time/frequency) of the phenomenon to medium-short term. A new process-response coastal recession model developed in this thesis has been designed to incorporate the behavioural and mechanical characteristics of coastal cliffs which are composed of with materials whose compressive strength is less than 5 MPa. The model simulates the spatial and temporal evolution of a cliff-2D profile that can consist of heterogeneous materials. To do so, marine dynamics: mean sea level, waves, tides, lake seasonal changes; is coupled with the evolution of land recession: erosion, cliff face failure and associated protective colluvial wedge. The model in its different variants can include analysis of material geomechanical stability, the effect of debris present at the cliff foot, groundwater effects, beach and run-up effects, changes in the mean sea level or changes (seasonal or inter-annual) in the mean lake level. Computational implementation and study of different numerical resolution techniques, in both time and space approximations, and the produced errors are exposed and analysed for the first two tidal periods. The results obtained in the errors analysis allow us to operate the model with a configuration that minimizes the error of the approximation methods. The model is validated through profile evolution assessment at various locations of coastline retreat on the Holderness Coast, Yorkshire, UK and on the north coast of Lake Erie, Ontario, Canada. The results represent an important stepforward in linking material properties to the processes of cliff recession, in considering the effect of groundwater charge and the slope oversteeping and their response to changing conditions caused by climate change (i.e. sea level, changes in lakes levels, etc.).
Resumo:
Los incendios forestales son la principal causa de mortalidad de árboles en la Europa mediterránea y constituyen la amenaza más seria para los ecosistemas forestales españoles. En la Comunidad Valenciana, diariamente se despliega cerca de un centenar de vehículos de vigilancia, cuya distribución se apoya, fundamentalmente, en un índice de riesgo de incendios calculado en función de las condiciones meteorológicas. La tesis se centra en el diseño y validación de un nuevo índice de riesgo integrado de incendios, especialmente adaptado a la región mediterránea y que facilite el proceso de toma de decisiones en la distribución diaria de los medios de vigilancia contra incendios forestales. El índice adopta el enfoque de riesgo integrado introducido en la última década y que incluye dos componentes de riesgo: el peligro de ignición y la vulnerabilidad. El primero representa la probabilidad de que se inicie un fuego y el peligro potencial para que se propague, mientras que la vulnerabilidad tiene en cuenta las características del territorio y los efectos potenciales del fuego sobre el mismo. Para el cálculo del peligro potencial se han identificado indicadores relativos a los agentes naturales y humanos causantes de incendios, la ocurrencia histórica y el estado de los combustibles, extremo muy relacionado con la meteorología y las especies. En cuanto a la vulnerabilidad se han empleado indicadores representativos de los efectos potenciales del incendio (comportamiento del fuego, infraestructuras de defensa), como de las características del terreno (valor, capacidad de regeneración…). Todos estos indicadores constituyen una estructura jerárquica en la que, siguiendo las recomendaciones de la Comisión europea para índices de riesgo de incendios, se han incluido indicadores representativos del riesgo a corto plazo y a largo plazo. El cálculo del valor final del índice se ha llevado a cabo mediante la progresiva agregación de los componentes que forman cada uno de los niveles de la estructura jerárquica del índice y su integración final. Puesto que las técnicas de decisión multicriterio están especialmente orientadas a tratar con problemas basados en estructuras jerárquicas, se ha aplicado el método TOPSIS para obtener la integración final del modelo. Se ha introducido en el modelo la opinión de los expertos, mediante la ponderación de cada uno de los componentes del índice. Se ha utilizado el método AHP, para obtener las ponderaciones de cada experto y su integración en un único peso por cada indicador. Para la validación del índice se han empleado los modelos de Ecuaciones de Estimación Generalizadas, que tienen en cuenta posibles respuestas correlacionadas. Para llevarla a cabo se emplearon los datos de oficiales de incendios ocurridos durante el período 1994 al 2003, referenciados a una cuadrícula de 10x10 km empleando la ocurrencia de incendios y su superficie, como variables dependientes. Los resultados de la validación muestran un buen funcionamiento del subíndice de peligro de ocurrencia con un alto grado de correlación entre el subíndice y la ocurrencia, un buen ajuste del modelo logístico y un buen poder discriminante. Por su parte, el subíndice de vulnerabilidad no ha presentado una correlación significativa entre sus valores y la superficie de los incendios, lo que no descarta su validez, ya que algunos de sus componentes tienen un carácter subjetivo, independiente de la superficie incendiada. En general el índice presenta un buen funcionamiento para la distribución de los medios de vigilancia en función del peligro de inicio. No obstante, se identifican y discuten nuevas líneas de investigación que podrían conducir a una mejora del ajuste global del índice. En concreto se plantea la necesidad de estudiar más profundamente la aparente correlación que existe en la provincia de Valencia entre la superficie forestal que ocupa cada cuadrícula de 10 km del territorio y su riesgo de incendios y que parece que a menor superficie forestal, mayor riesgo de incendio. Otros aspectos a investigar son la sensibilidad de los pesos de cada componente o la introducción de factores relativos a los medios potenciales de extinción en el subíndice de vulnerabilidad. Summary Forest fires are the main cause of tree mortality in Mediterranean Europe and the most serious threat to the Spanisf forest. In the Spanish autonomous region of Valencia, forest administration deploys a mobile fleet of 100 surveillance vehicles in forest land whose allocation is based on meteorological index of wildlandfire risk. This thesis is focused on the design and validation of a new Integrated Wildland Fire Risk Index proposed to efficient allocation of vehicles and specially adapted to the Mediterranean conditions. Following the approaches of integrated risk developed last decade, the index includes two risk components: Wildland Fire Danger and Vulnerability. The former represents the probability a fire ignites and the potential hazard of fire propagation or spread danger, while vulnerability accounts for characteristics of the land and potential effects of fire. To calculate the Wildland Fire Danger, indicators of ignition and spread danger have been identified, including human and natural occurrence agents, fuel conditions, historical occurrence and spread rate. Regarding vulnerability se han empleado indicadores representativos de los efectos potenciales del incendio (comportamiento del fuego, infraestructurasd de defensa), como de las características del terreno (valor, capacidad de regeneración…). These indicators make up the hierarchical structure for the index, which, following the criteria of the European Commission both short and long-term indicators have been included. Integration consists of the progressive aggregation of the components that make up every level in risk the index and, after that, the integration of these levels to obtain a unique value for the index. As Munticriteria methods are oriented to deal with hierarchically structured problems and with situations in which conflicting goals prevail, TOPSIS method is used in the integration of components. Multicriteria methods were also used to incorporate expert opinion in weighting of indicators and to carry out the aggregation process into the final index. The Analytic Hierarchy Process method was used to aggregate experts' opinions on each component into a single value. Generalized Estimation Equations, which account for possible correlated responses, were used to validate the index. Historical records of daily occurrence for the period from 1994 to 2003, referred to a 10x10-km-grid cell, as well as the extent of the fires were the dependant variables. The results of validation showed good Wildland Fire Danger component performance, with high correlation degree between Danger and occurrence, a good fit of the logistic model used and a good discrimination power. The vulnerability component has not showed a significant correlation between their values and surface fires, which does not mean the index is not valid, because of the subjective character of some of its components, independent of the surface of the fires. Overall, the index could be used to optimize the preventing resources allocation. Nevertheless, new researching lines are identified and discussed to improve the overall performance of the index. More specifically the need of study the inverse relationship between the value of the wildfire Fire Danger component and the forested surface of each 10 - km cell is set out. Other points to be researched are the sensitivity of the index component´s weight and the possibility of taking into account indicators related to fire fighting resources to make up the vulnerability component.
Resumo:
Este trabajo estudia la aportación que los métodos de agregación de juicios de expertos pueden realizar en el cálculo de la peligrosidad sísmica de emplazamientos. Se han realizado cálculos en dos emplazamientos de la Península Ibérica: Mugardos (La Coruña) y Cofrentes (Valencia) que están sometidos a regímenes tectónicos distintos y que, además, alojan instalaciones industriales de gran responsabilidad. Las zonas de estudio, de 320 Km de radio, son independientes. Se ha aplicado un planteamiento probabilista a la estimación de la tasa anual de superación de valores de la aceleración horizontal de pico y se ha utilizado el Método de Montecarlo para incorporar a los resultados la incertidumbre presente en los datos relativos a la definición de cada fuente sismogenética y de su sismicidad. Los cálculos se han operado mediante un programa de ordenador, desarrollado para este trabajo, que utiliza la metodología propuesta por el Senior Seismic Hazard Analysis Commitee (1997) para la NRC. La primera conclusión de los resultados ha sido que la Atenuación es la fuente principal de incertidumbre en las estimaciones de peligrosidad en ambos casos. Dada la dificultad de completar los datos históricos disponibles de esta variable se ha estudiado el comportamiento de cuatro métodos matemáticos de agregación de juicios de expertos a la hora de estimar una ley de atenuación en un emplazamiento. Los datos de partida se han obtenido del Catálogo de Isosistas del IGN. Los sismos utilizados como variables raíz se han elegido con el criterio de cubrir uniformemente la serie histórica disponible y los valores de magnitud observados. Se ha asignado un panel de expertos particular a cada uno de los dos emplazamientos y se han aplicado a sus juicios los métodos de Cooke, equipesos, Apostolakis_Mosleh y Morris. Sus propuestas se han comparado con los datos reales para juzgar su eficacia y su facilidad de operación. A partir de los resultados se ha concluido que el método de Cooke ha mostrado el comportamiento más eficiente y robusto para ambos emplazamientos. Este método, además, ha permitido identificar, razonadamente, a aquellos expertos que no deberían haberse introducido en un panel. The present work analyses the possible contribution of the mathematical methods of aggregation in the assessment of Seismic Hazzard. Two sites, in the Iberian Peninsula, have been considered: Mugardos ( La Coruña) and Cofrentes (Valencia).Both of them are subjected to different tectonic regimes an both accommodate high value industrial plants. Their areas of concern, with radius of 320 Km, are not overlapping. A probabilistic approach has been applied in the assessment the annual probability of exceedence of the horizontal peak acceleration. The Montecarlo Method has allowed to transfer the uncertainty in the models and parameters to the final results. A computer program has been developed for this purpose. The methodology proposed by the Senior Seismic Analysis Committee (1997) for the NRC has been considered. Attenuation in Ground motion has been proved to be the main source of uncertainty in seismic hazard for both sites. Taking into account the difficulties to complete existing historical data in this subject the performance of four mathematical methods of aggregation has been studied. Original data have been obtained from the catalogs of the Spanish National Institute of Geography. The seismic events considered were chosen to cover evenly the historical records and the observed values of magnitude. A panel of experts have been applied to each site and four aggregation methods have been developed : equal weights, Cooke, Apostolakis-Mosleh and Morris The four proposals have been compaired with the actual data to judge their performance and ease of application. The results have shown that the Method of Cooke have proved the most efficient and robust for both sites. This method, besides, allow the reasoned identification of those experts who should be rejected from the panel
Resumo:
In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES- Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems.
Resumo:
En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.