11 resultados para hierarchical porous media
em Universidad Politécnica de Madrid
Resumo:
The wetting front is the zone where water invades and advances into an initially dry porous material and it plays a crucial role in solute transport through the unsaturated zone. Water is an essential part of the physiological process of all plants. Through water, necessary minerals are moved from the roots to the parts of the plants that require them. Water moves chemicals from one part of the plant to another. It is also required for photosynthesis, for metabolism and for transpiration. The leaching of chemicals by wetting fronts is influenced by two major factors, namely: the irregularity of the fronts and heterogeneity in the distribution of chemicals, both of which have been described by using fractal techniques. Soil structure can significantly modify infiltration rates and flow pathways in soils. Relations between features of soil structure and features of infiltration could be elucidated from the velocities and the structure of wetting fronts. When rainwater falls onto soil, it doesn?t just pool on surfaces. Water ?or another fluid- acts differently on porous surfaces. If the surface is permeable (porous) it seeps down through layers of soil, filling that layer to capacity. Once that layer is filled, it moves down into the next layer. In sandy soil, water moves quickly, while it moves much slower through clay soil. The movement of water through soil layers is called the the wetting front. Our research concerns the motion of a liquid into an initially dry porous medium. Our work presents a theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. The aim was to model the mass geometry interplay by using the fractal dimension D of a stationary wetting front. The plane corresponding to the image is divided in several squares (the minimum correspond to the pixel size) of size length ". We acknowledge the help of Prof. M. García Velarde and the facilities offered by the Pluri-Disciplinary Institute of the Complutense University of Madrid. We also acknowledge the help of European Community under project Multi-scale complex fluid flows and interfacial phenomena (PITN-GA-2008-214919). Thanks are also due to ERCOFTAC (PELNoT, SIG 14)
Resumo:
This paper refers to the numerical solution of the classical Darcy's problem of plane fluid through isotropic media. Regarding the numerical procedure,the Laplace equation, is a classical one in mathematical physics and several procedures have been devised in order to solve it. So as to show the capability of the method, the paper presents some exemples.
Resumo:
Scaling is becoming an increasingly important topic in the earth and environmental sciences as researchers attempt to understand complex natural systems through the lens of an ever-increasing set of methods and scales. The guest editors introduce the papers in this issue’s special section and present an overview of some of the work being done. Scaling remains one of the most challenging topics in earth and environmental sciences, forming a basis for our understanding of process development across the multiple scales that make up the subsurface environment. Tremendous progress has been made in discovery, explanation, and applications of scaling. And yet much more needs to be done and is being done as part of the modern quest to quantify, analyze, and manage the complexity of natural systems. Understanding and succinct representation of scaling properties can unveil underlying relationships between system structure and response functions, improve parameterization of natural variability and heterogeneity, and help us address societal needs by effectively merging knowledge acquired at different scales.
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.
Resumo:
Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.
Resumo:
The study of particulate systems is of great interest in many fields of science and technology. Soil, sediments, powders, granular materials, colloidal and particulate suspensions are examples of systems involving many size particles. For those systems, the statistical description of the particle size distribution (PSD), that is, the mathematical distribution that defines the relative amounts of particles present, sorted according to size, is a crutial issue. The PSD can be important in understanding soil hydraulic properties, the geological origin or sediments or the physical and chemical properties of granular materials and ceramics, among others.
Resumo:
Contaminated soil reuse was investigated, with higher profusion, throughout the early 90’s, coinciding with the 1991 Gulf War, when efforts to amend large crude oil releases began in geotechnical assessment of contaminated soils. Isolated works referring to geotechnical testing with hydrocarbon ground contaminants are described in the state-of-the-art, which have been extended to other type of contaminated soil references. Contaminated soils by light non-aquous phase liquids (LNAPL) bearing capacity reduction has been previously investigated from a forensic point of view. To date, all the research works have been published based on the assumption of constant contaminant saturation for the entire soil mass. In contrast, the actual LNAPLs distribution plumes exhibit complex flow patterns which are subject to physical and chemical changes with time and distance travelled from the release source. This aspect has been considered along the present text. A typical Madrid arkosic soil formation is commonly known as Miga sand. Geotechnical tests have been carried out, with Miga sand specimens, in incremental series of LNAPL concentrations in order to observe the soil engineering properties variation due to a contamination increase. Results are discussed in relation with previous studies and as a matter of fact, soil mechanics parameters change in the presence of LNAPL, showing different tendencies according to each test and depending on the LNAPL content, as well as to the specimen’s initially planned relative density, dense or loose. Geotechnical practical implications are also commented on and analyzed. Variation on geotechnical properties may occur only within the external contour of contamination distribution plume. This scope has motivated the author to develop a physical model based on transparent soil technology. The model aims to reproduce the distribution of LNAPL into the ground due to an accidental release from a storage facility. Preliminary results indicate that the model is a potentially complementary tool for hydrogeological applications, site-characterization and remediation treatment testing within the framework of soil pollution events. A description of the test setup of an innovative three dimensional physical model for the flow of two or more phases, in porous media, is presented herein, along with a summary of the advantages, limitations and future applications for modeling with transparent material. En los primeros años de la década de los años 90, del siglo pasado, coincidiendo con la Guerra del Golfo en 1991, se investigó intensamente sobre la reutilización de suelos afectados por grandes volúmenes de vertidos de crudo, fomentándose la evaluación geotécnica de los suelos contaminados. Se describen, en el estado del arte de esta tésis, una serie de trabajos aislados en relación con la caracterización geotécnica de suelos contaminados con hidrocarburos, descripción ampliada mediante referencias relacionadas con otros tipos de contaminación de suelos. Existen estudios previos de patología de cimentaciones que analizan la reducción de la capacidad portante de suelos contaminados por hidrocarburos líquidos ligeros en fase no acuosa (acrónimo en inglés: LNAPL de “Liquid Non-Aquous Phase Liquid”). A fecha de redacción de la tesis, todas las publicaciones anteriores estaban basadas en la consideración de una saturación del contaminante constante en toda la extensión del terreno de cimentación. La distribución real de las plumas de contaminante muestra, por el contrario, complejas trayectorias de flujo que están sujetas a cambios físico-químicos en función del tiempo y la distancia recorrida desde su origen de vertido. Éste aspecto ha sido considerado y tratado en el presente texto. La arena de Miga es una formación geológica típica de Madrid. En el ámbito de esta tesis se han desarrollado ensayos geotécnicos con series de muestras de arena de Miga contaminadas con distintas concentraciones de LNAPL con el objeto de estimar la variación de sus propiedades geotécnicas debido a un incremento de contaminación. Se ha realizado una evaluación de resultados de los ensayos en comparación con otros estudios previamente analizados, resultando que las propiedades mecánicas del suelo, efectivamente, varían en función del contenido de LNAPL y de la densidad relativa con la que se prepare la muestra, densa o floja. Se analizan y comentan las implicaciones de carácter práctico que supone la mencionada variación de propiedades geotécnicas. El autor ha desarrollado un modelo físico basado en la tecnología de suelos transparentes, considerando que las variaciones de propiedades geotécnicas únicamente deben producirse en el ámbito interior del contorno de la pluma contaminante. El objeto del modelo es el de reproducir la distribución de un LNAPL en un terreno dado, causada por el vertido accidental de una instalación de almecenamiento de combustible. Los resultados preliminares indican que el modelo podría emplearse como una herramienta complementaria para el estudio de eventos contaminantes, permitiendo el desarrollo de aplicaciones de carácter hidrogeológico, caracterización de suelos contaminados y experimentación de tratamientos de remediación. Como aportación de carácter innovadora, se presenta y describe un modelo físico tridimensional de flujo de dos o más fases a través de un medio poroso transparente, analizándose sus ventajas e inconvenientes así como sus limitaciones y futuras aplicaciones.
Resumo:
In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.
Resumo:
Soil tomography and morphological functions built over Minkowski functionals were used to describe the impact on pore structure of two soil management practices in a Mediterranean vineyard. Soil structure controls important physical and biological processes in soil–plant–microbial systems. Those processes are dominated by the geometry of soil pore structure, and a correct model of this geometry is critical for understanding them. Soil tomography has been shown to provide rich three-dimensional digital information on soil pore geometry. Recently, mathematical morphological techniques have been proposed as powerful tools to analyze and quantify the geometrical features of porous media. Minkowski functionals and morphological functions built over Minkowski functionals provide computationally efficient means to measure four fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. We used the threshold and the dilation and erosion of three-dimensional images to generate morphological functions and explore the evolution of Minkowski functionals as the threshold and as the degree of dilation and erosion changes. We analyzed the three-dimensional geometry of soil pore space with X-ray computed tomography (CT) of intact soil columns from a Spanish Mediterranean vineyard by using two different management practices (conventional tillage versus permanent cover crop of resident vegetation). Our results suggested that morphological functions built over Minkowski functionals provide promising tools to characterize soil macropore structure and that the evolution of morphological features with dilation and erosion is more informative as an indicator of structure than moving threshold for both soil managements studied.
Resumo:
Fluid flow and fabric compaction during vacuum assisted resin infusion (VARI) of composite materials was simulated using a level set-based approach. Fluid infusion through the fiber preform was modeled using Darcy’s equations for the fluid flow through a porous media. The stress partition between the fluid and the fiber bed was included by means of Terzaghi’s effective stress theory. Tracking the fluid front during infusion was introduced by means of the level set method. The resulting partial differential equations for the fluid infusion and the evolution of flow front were discretized and solved approximately using the finite differences method with a uniform grid discretization of the spatial domain. The model results were validated against uniaxial VARI experiments through an [0]8 E-glass plain woven preform. The physical parameters of the model were also independently measured. The model results (in terms of the fabric thickness, pressure and fluid front evolution during filling) were in good agreement with the numerical simulations, showing the potential of the level set method to simulate resin infusion
Resumo:
Radon gas (Rn) is a natural radioactive gas present in some soils and able to penetrate buildings through the building envelope in contact with the soil. Radon can accumulate within buildings and consequently be inhaled by their occupants. Because it is a radioactive gas, its disintegration process produces alpha particles that, in contact with the lung epithelia, can produce alterations potentially giving rise to cancer. Many international organizations related to health protection, such as WHO, confirm this causality. One way to avoid the accumulation of radon in buildings is to use the building envelope as a radon barrier. The extent to which concrete provides such a barrier is described by its radon diffusion coefficient (DRn), a parameter closely related to porosity (ɛ) and tortuosity factor (τ). The measurement of the radon diffusion coefficient presents challenges, due to the absence of standard procedures, the requirement to establish adequate airtightness in testing apparatus (referred to here as the diffusion cell), and due to the fact that measurement has to be carried out in an environment certified for use of radon calibrated sources. In addition to this calibrated radon sources are costly. The measurement of the diffusion coefficient for non-radioactive gas is less complex, but nevertheless retains a degree of difficulty due to the need to provide reliably airtight apparatus for all tests. Other parameters that can characterize and describe the process of gas transport through concrete include the permeability coefficient (K) and the electrical resistivity (ρe), both of which can be measured relatively easily with standardized procedure. The use of these parameters would simplify the characterization of concrete behaviour as a radon barrier. Although earlier studies exist, describing correlation among these parameters, there is, as has been observed in the literature, little common ground between the various research efforts. For precisely this reason, prior to any attempt to measure radon diffusion, it was deemed necessary to carry out further research in this area, as a foundation to the current work, to explore potential relationships among the following parameters: porosity-tortuosity, oxygen diffusion coefficient, permeability coefficient and resistivity. Permeability coefficient measurement (m2) presents a more straightforward challenge than diffusion coefficient measurement. Some authors identify a relationship between both coefficients, including Gaber (1988), who proposes: k= a•Dn Equation 1 Where: a=A/(8ΠD020), A = sample cross-section, D020 = diffusion coefficient in air (m2/s). Other studies (Klink et al. 1999, Gaber and Schlattner 1997, Gräf and Grube et al. 1986), experimentally relate both coefficients of different types of concrete confirming that this relationship exists, as represented by the simplified expression: k≈Dn Equation 2 In each particular study a different value for n was established, varying from 1.3 to 2.5, but this requires determination of a value for n in a more general way because these proposed models cannot estimate diffusion coefficient. If diffusion coefficient has to be measured to be able to establish n, these relationships are not interesting. The measurement of electric resistivity is easier than diffusion coefficient measurement. Correlation between the parameters can be established via Einstein´s law that relates movement of electrical charges to media conductivity according to the expression: D_e=k/ρ Equation 3 Where: De = diffusion coefficient (cm2/s), K = constant, ρ = electric resistivity (Ω•cm). The tortuosity factor is used to represent the uneven geometry of concrete pores, which are described as being not straight, but tortuous. This factor was first introduced in the literature to relate global porosity with fluid transport in a porous media, and can be formulated in a number of different ways. For example, it can take the form of equation 4 (Mason y Malinauskas), which combines molecular and Knudsen diffusion using the tortuosity factor: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Equation 4 Where: r = medium radius obtained from MIP (µm), M = gas molecular mass, R = ideal gases constant, T = temperature (K), D0 = coefficient diffusion in the air (m2/s). Few studies provide any insight as to how to obtain the tortuosity factor. The work of Andrade (2012) is exceptional in this sense, as it outlines how the tortuosity factor can be deduced from pore size distribution (from MIP) from the equation: ∅_th=∅_0•ε^(-τ). Equation 5 Where: Øth = threshold diameter (µm), Ø0 = minimum diameter (µm), ɛ = global porosity, τ = tortuosity factor. Alternatively, the following equation may be used to obtain the tortuosity factor: DO2=D0*ɛτ Equation 6 Where: DO2 = oxygen diffusion coefficient obtained experimentally (m2/s), DO20 = oxygen diffusion coefficient in the air (m2/s). This equation has been inferred from Archie´s law ρ_e=〖a•ρ〗_0•ɛ^(-m) and from the Einstein law mentioned above, using the values of oxygen diffusion coefficient obtained experimentally. The principal objective of the current study was to establish correlations between the different parameters that characterize gas transport through concrete. The achievement of this goal will facilitate the assessment of the useful life of concrete, as well as open the door to the pro-active planning for the use of concrete as a radon barrier. Two further objectives were formulated within the current study: 1.- To develop a method for measurement of gas coefficient diffusion in concrete. 2.- To model an analytic estimation of radon diffusion coefficient from parameters related to concrete porosity and tortuosity factor. In order to assess the possible correlations, parameters have been measured using the standardized procedures or purpose-built in the laboratory for the study of equations 1, 2 y 3. To measure the gas diffusion coefficient, a diffusion cell was designed and manufactured, with the design evolving over several cycles of research, leading ultimately to a unit that is reliably air tight. The analytic estimation of the radon diffusion coefficient DRn in concrete is based on concrete global porosity (ɛ), whose values may be experimentally obtained from a mercury intrusion porosimetry test (MIP), and from its tortuosity factor (τ), derived using the relations expressed in equations 5 y 6. The conclusions of the study are: Several models based on regressions, for concrete with a relative humidity of 50%, have been proposed to obtain the diffusion coefficient following the equations K=Dn, K=a*Dn y D=n/ρe. The final of these three relations is the one with the determination coefficient closest to a value of 1: D=(19,997*LNɛ+59,354)/ρe Equation 7 The values of the obtained oxygen diffusion coefficient adjust quite well to those experimentally measured. The proposed method for the measurement of the gas coefficient diffusion is considered to be adequate. The values obtained for the oxygen diffusion coefficient are within the range of those proposed by the literature (10-7 a 10-8 m2/s), and are consistent with the other studied parameters. Tortuosity factors obtained using pore distribution and the expression Ø=Ø0*ɛ-τ are inferior to those from resistivity ρ=ρ0*ɛ-τ. The closest relationship to it is the one with porosity of pore diameter 1 µm (τ=2,07), being 7,21% inferior. Tortuosity factors obtained from the expression DO2=D0*ɛτ are similar to those from resistivity: for global tortuosity τ=2,26 and for the rest of porosities τ=0,7. Estimated radon diffusion coefficients are within the range of those consulted in literature (10-8 a 10-10 m2/s).ABSTRACT El gas radón (Rn) es un gas natural radioactivo presente en algunos terrenos que puede penetrar en los edificios a través de los cerramientos en contacto con el mismo. En los espacios interiores se puede acumular y ser inhalado por las personas. Al ser un gas radioactivo, en su proceso de desintegración emite partículas alfa que, al entrar en contacto con el epitelio pulmonar, pueden producir alteraciones del mismo causando cáncer. Muchos organismos internacionales relacionados con la protección de la salud, como es la OMS, confirman esta causalidad. Una de las formas de evitar que el radón penetre en los edificios es utilizando las propiedades de barrera frente al radón de su propia envolvente en contacto con el terreno. La principal característica del hormigón que confiere la propiedad de barrera frente al radón cuando conforma esta envolvente es su permeabilidad que se puede caracterizar mediante su coeficiente de difusión (DRn). El coeficiente de difusión de un gas en el hormigón es un parámetro que está muy relacionado con su porosidad (ɛ) y su tortuosidad (τ). La medida del coeficiente de difusión del radón resulta bastante complicada debido a que el procedimiento no está normalizado, a que es necesario asegurar una estanquidad a la celda de medida de la difusión y a que la medida tiene que ser realizada en un laboratorio cualificado para el uso de fuentes de radón calibradas, que además son muy caras. La medida del coeficiente de difusión de gases no radioactivos es menos compleja, pero sigue teniendo un alto grado de dificultad puesto que tampoco está normalizada, y se sigue teniendo el problema de lograr una estanqueidad adecuada de la celda de difusión. Otros parámetros que pueden caracterizar el proceso son el coeficiente de permeabilidad (K) y la resistividad eléctrica (ρe), que son más fáciles de determinar mediante ensayos que sí están normalizados. El uso de estos parámetros facilitaría la caracterización del hormigón como barrera frente al radón, pero aunque existen algunos estudios que proponen correlaciones entre estos parámetros, en general existe divergencias entre los investigadores, como se ha podido comprobar en la revisión bibliográfica realizada. Por ello, antes de tratar de medir la difusión del radón se ha considerado necesario realizar más estudios que puedan clarificar las posibles relaciones entre los parámetros: porosidad-tortuosidad, coeficiente de difusión del oxígeno, coeficiente de permeabilidad y resistividad. La medida del coeficiente de permeabilidad (m2) es más sencilla que el de difusión. Hay autores que relacionan el coeficiente de permeabilidad con el de difusión. Gaber (1988) propone la siguiente relación: k= a•Dn Ecuación 1 En donde: a=A/(8ΠD020), A = sección de la muestra, D020 = coeficiente de difusión en el aire (m2/s). Otros estudios (Klink et al. 1999, Gaber y Schlattner 1997, Gräf y Grube et al. 1986) relacionan de forma experimental los coeficientes de difusión de radón y de permeabilidad de distintos hormigones confirmando que existe una relación entre ambos parámetros, utilizando la expresión simplificada: k≈Dn Ecuación 2 En cada estudio concreto se han encontrado distintos valores para n que van desde 1,3 a 2,5 lo que lleva a la necesidad de determinar n porque no hay métodos que eviten la determinación del coeficiente de difusión. Si se mide la difusión ya deja de ser de interés la medida indirecta a través de la permeabilidad. La medida de la resistividad eléctrica es muchísimo más sencilla que la de la difusión. La relación entre ambos parámetros se puede establecer a través de una de las leyes de Einstein que relaciona el movimiento de cargas eléctricas con la conductividad del medio según la siguiente expresión: D_e=k/ρ_e Ecuación 3 En donde: De = coeficiente de difusión (cm2/s), K = constante, ρe = resistividad eléctrica (Ω•cm). El factor de tortuosidad es un factor de forma que representa la irregular geometría de los poros del hormigón, al no ser rectos sino tener una forma tortuosa. Este factor se introduce en la literatura para relacionar la porosidad total con el transporte de un fluido en un medio poroso y se puede formular de distintas formas. Por ejemplo se destaca la ecuación 4 (Mason y Malinauskas) que combina la difusión molecular y la de Knudsen utilizando el factor de tortuosidad: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Ecuación 4 En donde: r = radio medio obtenido del MIP (µm), M = peso molecular del gas, R = constante de los gases ideales, T = temperatura (K), D0 = coeficiente de difusión de un gas en el aire (m2/s). No hay muchos estudios que proporcionen una forma de obtener este factor de tortuosidad. Destaca el estudio de Andrade (2012) en el que deduce el factor de tortuosidad de la distribución del tamaño de poros (curva de porosidad por intrusión de mercurio) a partir de la ecuación: ∅_th=∅_0•ε^(-τ) Ecuación 5 En donde: Øth = diámetro umbral (µm), Ø0 = diámetro mínimo (µm), ɛ = porosidad global, τ = factor de tortuosidad. Por otro lado, se podría utilizar también para obtener el factor de tortuosidad la relación: DO2=D0*-τ Ecuación 6 En donde: DO2 = coeficiente de difusión del oxígeno experimental (m2/s), DO20 = coeficiente de difusión del oxígeno en el aire (m2/s). Esta ecuación está inferida de la ley de Archie ρ_e=〖a•ρ〗_0•ɛ^(-m) y la de Einstein mencionada anteriormente, utilizando valores del coeficiente de difusión del oxígeno DO2 obtenidos experimentalmente. El objetivo fundamental de la tesis es encontrar correlaciones entre los distintos parámetros que caracterizan el transporte de gases a través del hormigón. La consecución de este objetivo facilitará la evaluación de la vida útil del hormigón así como otras posibilidades, como la evaluación del hormigón como elemento que pueda ser utilizado en la construcción de nuevos edificios como barrera frente al gas radón presente en el terreno. Se plantean también los siguientes objetivos parciales en la tesis: 1.- Elaborar una metodología para la medida del coeficiente de difusión de los gases en el hormigón. 2.- Plantear una estimación analítica del coeficiente de difusión del radón a partir de parámetros relacionados con su porosidad y su factor de tortuosidad. Para el estudio de las correlaciones posibles, se han medido los parámetros con los procedimientos normalizados o puestos a punto en el propio Instituto, y se han estudiado las reflejadas en las ecuaciones 1, 2 y 3. Para la medida del coeficiente de difusión de gases se ha fabricado una celda que ha exigido una gran variedad de detalles experimentales con el fin de hacerla estanca. Para la estimación analítica del coeficiente de difusión del radón DRn en el hormigón se ha partido de su porosidad global (ɛ), que se obtiene experimentalmente del ensayo de porosimetría por intrusión de mercurio (MIP), y de su factor de tortuosidad (τ), que se ha obtenido a partir de las relaciones reflejadas en las ecuaciones 5 y 6. Las principales conclusiones obtenidas son las siguientes: Se proponen modelos basados en regresiones, para un acondicionamiento con humedad relativa de 50%, para obtener el coeficiente de difusión del oxígeno según las relaciones: K=Dn, K=a*Dn y D=n/ρe. La propuesta para esta última relación es la que tiene un mejor ajuste con R2=0,999: D=(19,997*LNɛ+59,354)/ρe Ecuación 7 Los valores del coeficiente de difusión del oxígeno así estimados se ajustan a los obtenidos experimentalmente. Se considera adecuado el método propuesto de medida del coeficiente de difusión para gases. Los resultados obtenidos para el coeficiente de difusión del oxígeno se encuentran dentro del rango de los consultados en la literatura (10-7 a 10-8 m2/s) y son coherentes con el resto de parámetros estudiados. Los resultados de los factores de tortuosidad obtenidos de la relación Ø=Ø0*ɛ-τ son inferiores a la de la resistividad (ρ=ρ0*ɛ-τ). La relación que más se ajusta a ésta, siendo un 7,21% inferior, es la de la porosidad correspondiente al diámetro 1 µm con τ=2,07. Los resultados de los factores de tortuosidad obtenidos de la relación DO2=D0*ɛτ son similares a la de la resistividad: para la porosidad global τ=2,26 y para el resto de porosidades τ=0,7. Los coeficientes de difusión de radón estimados mediante estos factores de tortuosidad están dentro del rango de los consultados en la literatura (10-8 a 10-10 m2/s).