2 resultados para heat selection

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present research is framed within the project MODIFICA (MODelo predictivo - edIFIcios - Isla de Calor urbanA) aimed at developing a predictive model for dwelling energy performance under the urban heat island effect in order to implement it in the evaluation of real energy demand and consumption of dwellings as well as in the selection of energy retrofitting strategies. It is funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. Despite great advances on building energy performance have been achieved during the last years, available climate data is derived from weather stations placed in the outskirts of the city. Hence, urban heat island effect is not considered in energy simulations, which implies an important lack of accuracy. Since 1980's several international studies have been conducted on the urban heat island (UHI) phenomena, which modifies the atmospheric conditions of the urban centres due to urban agglomeration [1][2][3][4]. In the particular case of Madrid, multiple maps haven been generated using different methodologies during the last two decades [5][6][7]. These maps allow us to study the UHI phenomena from a wide perspective, offering however an static representation of it. Consequently a dynamic model for Madrid UHI is proposed, in order to evaluate it in a continuous way, and to be able to integrate it in building energy simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present research is framed within the project MODIFICA (MODelo predictivo - edIFIcios - Isla de Calor Urbana) aimed at developing a predictive model for dwelling energy performance under the urban heat island effect in order to implement it in the evaluation of real energy demand and consumption of dwellings as well as in the selection of energy retrofitting strategies. It is funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. The scope of our predictive model is defined by the heat island effect (UHI) of urban structures that compose the city of Madrid. In particular, we focus on the homogeneous areas for urban structures with the same urban and building characteristics. Data sources for the definition of such homogeneous areas were provided by previous research on the UHI of Madrid. The objective is to establish a critical analysis of climate records used for energy simulation tools, which data come from weather stations placed in decontextualized areas from the usual urban reality, where the thermal conditions differs by up to 6ºC. In this way, we intend to develop a new predictive model for the consumption and demand in buildings depending on their location, the urban structure and the associated UHI, improving the future energy rehabilitation interventions