2 resultados para heartwood
em Universidad Politécnica de Madrid
Resumo:
This study analyses the variation of main physical-mechanical properties of wood along the longitudinal and radial directions of the tree for Abies alba Mill. growing in the Spanish Pyrenees. Small clear specimens were used to study the properties of volumetric shrinkage (VS), density (?), hardness (H), bending strength (MOR), modulus of elasticity (MOE), maximum compressive strength parallel to the grain (MCS) and impact strength (K). Several models of properties variation in the longitudinal and radial directions were analyzed. Main trends of variation of properties throughout the tree stem were identified although none of them could be fitted to predictive statistical models. Along the longitudinal direction, the properties studied followed a downward trend from the base to the crown, which was not significant in all cases, indicating that no differences in quality existed. Throughout the radial direction the trend is upward for the first 40-50 growth rings, after which it slopes downwards, more gently at first until rings 70-75 and then more steeply. This behaviour is related to variation in wood structure from the pith to the bark, depending on whether the wood is juvenile, sapwood or heartwood, and to wood maturity and microfibril angle. Authors encourage carrying further studies on other populations of A. alba in the Spanish Pyrenees to check if the trends found in this study apply to other provenances.
Resumo:
Nowadays, there is a great amount of genomic and transcriptomic data available about forest species, including ambitious projects looking for complete sequencing and annotation of different gymnosperm genomes [1, 2]. Pinus canariensis is an endemic conifer of the Canary Islands with re-sprouting capability and resilience against fire and mechanical damage, as result of an adaptation to volcanic environments. Additionally, this species has a high proportion of axial parenchyma compared with other conifers, and this tissue connects with radial parenchyma allowing transport of reserves. The most internal tracheids stop accumulating water [3], and get filled of resins and polyphenols synthesized by the axial parenchyma; this is the so-called ?torch-heartwood? [4], which avoids decay. This wood achieves very high prices due to its particular resistance to rot. These features make P. canariensis an interesting model species for the analysis of these developmental processes in conifers. In this study we aim to perform a complete transcriptome annotation during xylogenesis in Pinus canariensis, using next-generation sequencing (NGS) -Roche 454 pyrosequencing-, in order to provide a genomic resource for further analysis, including expression profiling and the identification of candidate genes for important adaptive features.