5 resultados para ground mass
em Universidad Politécnica de Madrid
Resumo:
Ariebreen is a small (0.37 km2) valley glacier located in southern Spitsbergen. Our ground-penetrating radar surveys of the glacier show that it is less than 30 m thick on average, with a maximum thickness of 82 m, and it appears to be entirely cold. By analysing digital terrain models of the ice surface from different dates, we determine the area and volume changes during two periods, 1936-1990 and 1990-2007. The total ice volume of the glacier has decreased by 73% during the entire period 1936-2007, which is equivalent to a mean mass balance rate of -0.6190.17 m/yr w.eq. The glacier thinning rate has increased markedly between the first and second periods, from -0.5090.22 to -0.9590.17 m/yr w.eq.
Resumo:
As part of ongoing work within the SvalGlac project aimed to obtain a reliable estimate of the total ice volume of Svalbard glaciers and their potential contribution to sea level rise, in this contribution we present volume calculations, with detailed error estimates, for ten glaciers on western Nordenskiöld Land, central Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 1999-2012, all of them except one within 2010-2012. The total area and volume of the ensemble are 113.38±0.09 km2 and 10.439±0.185 km3, respectively, while the individual areas, volumes and average ice thickness lie within 2.5-49.1 km2, 0.08-5.48 km3 and 29-108 m, respectively. The maximum recorded ice thickness, 265±15 m, corresponds to Fridtjovbreen, which has also the largest average thickness (108±1m). Available empirical formulae for Svalbard glaciers overestimate the total volume of these glaciers by 24% with respect to our calculation. On the basis of the pattern of scattering in the radargrams, we also analyse the hydrothermal structure of these glaciers. Nine out of ten are polythermal, while only one is entirely cold.
Resumo:
One of the aims of the SvalGlac project is to obtain an improved estimate, with reliable error estimates, of the volume of Svalbard glaciers and their potential contribution to sea level rise. As part of this work, we present volume calculations, with detailed error estimates, for eight glaciers on Wedel Jarlsberg Land, southern Spitsbergen, Svalbard. The volume estimates are based upon a dense net of GPR-retrieved ice thickness data collected over several field campaigns spanning the period 2004-2011. The total area and volume of the ensemble are 502.9±18.6 km2 and 80.72±2.85 km3, respectively. Excluding Ariebreen (a tiny glacier, menor que 0.4 km2 in area), the individual areas, volumes and average ice thickness lie within 4.7-141.0 km2, 0.30-25.85 km3 and 64-183 m, respectively. The maximum recorded ice thickness, ca. 619±13 m, is found in Austre Torellbreen. To estimate the ice volume of small non-echo-sounded tributary glaciers, we used a function providing the best fit to the ice thickness along the centre line of a collection of such tributaries where echo-soundings were available, and assuming parabolic cross-sections. We did some tests on the effect on the measured ice volumes of the distinct radio-wave velocity (RWV) of firn as compared to ice, and cold versus temperate ice, concluding that the changes in volume implied by such corrections were within the error bounds of our volume estimate using a constant RWV for the entire glacier inferred from common mid-point measurements on the upper ablation area.
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.