3 resultados para granular activated carbon
em Universidad Politécnica de Madrid
Resumo:
In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBAT16). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBAT16 was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBAT16 (average pore diameter of 56.5 Å). The Brunauer-Emmett-Teller (BET) surface area of the SBAT16 was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBAT16 adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBAT16 where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Implications: Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.
Resumo:
Los procesos de biofiltración por carbón activo biológico se han utilizado desde hace décadas, primeramente en Europa y después en Norte América, sin embargo no hay parámetros de diseño y operación específicos que se puedan utilizar de guía para la biofiltración. Además, el factor coste a la hora de elegir el carbón activo como medio de filtración impacta en el presupuesto, debido al elevado coste de inversión y de regeneración. A la hora de diseñar y operar filtros de carbón activo los requisitos que comúnmente se buscan son eliminar materia orgánica, olor, y sabor de agua. Dentro de la eliminación de materia orgánica se precisa la eliminación necesaria para evitar subproductos en la desinfección no deseados, y reducir los niveles de carbono orgánico disuelto biodegradable y asimilable a valores que consigan la bioestabilidad del agua producto, a fin de evitar recrecimiento de biofilm en las redes de distribución. El ozono se ha utilizado durante años como un oxidante previo a la biofiltración para reducir el olor, sabor, y color del agua, oxidando la materia orgánica convirtiendo los compuestos no biodegradables y lentamente biodegradables en biodegradables, consiguiendo que puedan ser posteriormente eliminados biológicamente en los filtros de carbón activo. Sin embargo la inestabilidad del ozono en el agua hace que se produzcan ácidos carboxilos, alcoholes y aldehídos, conocidos como subproductos de la desinfección. Con esta tesis se pretende dar respuesta principalmente a los siguientes objetivos: análisis de parámetros requeridos para el diseño de los filtros de carbón activo biológicos, necesidades de ozonización previa a la filtración, y comportamiento de la biofiltración en un sistema compuesto de coagulación sobre un filtro de carbón activo biológico. Los resultados obtenidos muestran que la biofiltración es un proceso que encaja perfectamente con los parámetros de diseño de plantas con filtración convencional. Aunque la capacidad de eliminación de materia orgánica se reduce a medida que el filtro se satura y entra en la fase biológica, la biodegradación en esta fase se mantienen estable y perdura a lo lago de los meses sin preocupaciones por la regeneración del carbón. Los valores de carbono orgánico disuelto biodegradable se mantienen por debajo de los marcados en la literatura existente para agua bioestable, lo que hace innecesaria la dosificación de ozono previa a la biofiltración. La adición de la coagulación con la corrección de pH sobre el carbón activo consigue una mejora en la reducción de la materia orgánica, sin afectar a la biodegradación del carbón activo, cumpliendo también con los requerimientos de turbidez a la salida de filtración. Lo que plantea importantes ventajas para el proceso. Granular activated carbon filters have been used for many years to treat and produce drinking water using the adsorption capacity of carbon, replacing it once the carbon lost its adsorption capacity and became saturated. On the other hand, biological activated carbon filters have been studied for decades, firstly in Europe and subsequently in North America, nevertheless are no generally accepted design and operational parameters documented to be used as design guidance for biofiltration. Perhaps this is because of the cost factor; to choose activated carbon as a filtration media requires a significant investment due to the high capital and regeneration costs. When activated carbon filters are typically required it is for the reduction of an organic load, removal of colour, taste and / or odour. In terms of organic matter reduction, the primary aim is to achieve as much removal as possible to reduce or avoid the introduction of disinfection by products, the required removal in biodegradable dissolved organic carbon and assimilable organic carbon to produce a biologically stable potable water which prohibits the regrowth of biofilm in the distribution systems. The ozone has historically been used as an oxidant to reduce colour, taste and odour by oxidizing the organic matter and increasing the biodegradability of the organic matter, enhancing the effectiveness of organic removal in downstream biological activated carbon filters. Unfortunately, ozone is unstable in water and reacts with organic matter producing carboxylic acids, alcohols, and aldehydes, known as disinfection by products. This thesis has the following objectives: determination of the required parameters for the design of the biological activated filters, the requirement of ozonization as a pre-treatment for the biological activated filters, and a performance assessment of biofiltration when coagulation is applied as a pretreatment for biological activated carbon filters. The results show that the process design parameters of biofiltration are compatible with those of conventional filtration. The organic matter removal reduces its effectiveness as soon as the filter is saturated and the biological stage starts, but the biodegradation continues steadily and lasts for a long period of time without the need of carbon regeneration. The removal of the biodegradable dissolved organic carbon is enough to produce a biostable water according to the values shown on the existing literature; therefore ozone is not required prior to the filtration. Furthermore, the addition of coagulant and pH control before the biological activated carbon filter achieves a additional removal of organic matter, without affecting the biodegradation that occurs in the activated carbon whilst also complying with the required turbidity removal.
Resumo:
Esta Tesis Doctoral tiene como principal objetivo el obtener una cadena de tratamientos seguros de aguas seriados que nos permita asegurar la calidad de las aguas para consumo humano en caso de emergencias, de tal forma que se minimicen los efectos de acciones hostiles, como sabotajes o actos terroristas, desastres naturales, etc y buscar soluciones adecuadas para garantizar en este caso la salud. Las plantas de tratamientos de aguas existentes comercialmente no aseguran dicha calidad y la documentación sobre el tema presenta vacíos de conocimiento, contradicciones entre resultados de investigaciones o insostenibilidad de conclusiones de las mismas. Estas carencias nos permiten determinar los aspectos a tratar durante la investigación. Por ello, este objetivo se concretó en tres acciones: Investigar sobre rendimientos de plantas convencionales en eliminación de microorganismos y productos tóxicos y peligrosos. Introducir mejoras que garanticen el rendimiento de las plantas convencionales. Investigar sobre la conveniencia de complementar las instalaciones existentes buscando seguridad y garantía sanitaria. Y se desarrollaron tres líneas de investigación: LI 1 “Inorgánicos”: Investigación sobre la eliminación de los metales boro, cobre y molibdeno mediante procesos de intercambio iónico y de coagulaciónfloculación- decantación. LI 2 “Compuestos Orgánicos Volátiles”: Investigación sobre la eliminación de los compuestos orgánicos 1,1 dicloroetano, 1,2 dicloroetano, clorobenceno, 1,3 dicloropropeno y hexacloro 1,3 butadieno mediante procesos de carbón activo granular y de oxidación avanzada. LI 3 “Plantas portátiles”: Investigación sobre plantas existentes portátiles para verificar su rendimiento teórico y proponer mejoras. Estas líneas de investigación se desarrollaron tanto en el nivel teórico como en el empírico, bien sea en laboratorio como en campo. A lo largo del documento se demuestra que las principales fuentes de contaminación, salvo la degradación de yacimientos naturales, proceden de la actividad humana (efluentes industriales y agrícolas, aguas residuales y actividades beligerantes) que provocan un amplio espectro de enfermedades por lo que dificultan tanto la definición de la fuente como la anticipada detección de la enfermedad. Las principales conclusiones que se obtuvieron están relacionadas con el rendimiento de eliminación de los parámetros tras la aplicación de los procesos y plantas de tratamiento de aguas anteriormente reseñadas. Sin embargo, el verdadero elemento designador de originalidad de esta Tesis Doctoral, tal como se ha reseñado arriba, radica en la definición de un sistema seriado de procesos de tratamiento de aguas que asegura la calidad en caso de emergencia. Éste se define en el siguiente orden: pretratamiento, oxidación, coagulación-floculación-decantación, filtración por arena, intercambio iónico, carbón activo granular, microfiltración, radiación UV, ósmosis inversa, radiación UV y cloración final. The main objective of this Thesis is to obtain a chain of stepwise safe water treatments that allow us to ensure the quality of water for human consumption in case of emergencies, so that the effects of hostile actions, such as sabotage or terrorism, natural disasters, etc. and seek appropriate solutions in this case to ensure health. The existing commercial water treatment plants do not ensure quality, and the documentation on the subject presents knowledge gaps or contradictions. These gaps allow us to determine the issues to be discussed during the investigation. Therefore, this objective was manifested in three actions: Researching yields in commercial plants and microorganisms, or toxic and dangerous products removal. Improvements to ensure the performance of conventional plants. Inquire about the advisability of implementing existing facilities for safety and health guarantee. And three lines of research are developed: LI 1 “Inorganic elements”: Research removing metals iron, copper and molybdenum by ion exchange processes and coagulation-flocculation-decantation. LI 2 “Volatile Organic Compounds”: Research removing organic compounds 1,1 dichloroethane, 1,2 dichloroethane, chlorobenzene, 1,3-dichloropropene and 1,3-butadiene hexachloro through processes of granular activated carbon and advanced oxidation. LI 3 “Compact Water Treatment Plants”: Research on existing packaged plants to verify theoretical performance and suggest improvements. These lines of research are developed both theoretically and empirically, both in the laboratory and in the field. Throughout the document, it is evident that the main sources of pollution, other than the degradation of natural deposits, come from human activity (industrial and agricultural effluents, sewage and belligerent activities) which cause a broad spectrum of diseases which hamper both the definition of the source and the early detection of the disease. The main conclusions drawn are related to both the removal efficiency parameters after application of processes and treatment plants outlined above water. However, the real designator of originality of this thesis, such as outlined above, lies in the definition of a serial system water treatment processes assuring quality in case of emergency. This is defined in the following order: pretreatment, oxidation, coagulation-flocculation-sedimentation, sand filtration, ion exchange, granular activated carbon, microfiltration, UV radiation, reverse osmosis, UV radiation and final chlorination.