5 resultados para glandular wing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blended-wing-body (BWB) aircraft are being studied with interest and effort to improve economic efficiency and to overcome operational and infrastructure related problems associated to the increasing size of conventional transport airplanes. The objective of the research reported here is to assess the aerodynamic feasibility and operational efficiency of a great size, blended wing body layout, a configuration which has many advantages. To this end, the conceptual aerodynamic design process of an 800 seat BWB has been done completed with a comparison of performance and operational issues with last generation of conventional very large aircraft. The results are greatly encouraging and predict about 20 percent increase in transport productivity efficiency, without the burden of new or aggravated safety or operational problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BASING their work on a linear theory, Evvard1 and Krasilshchikova2'3 independently developed an expression that yields the perturbation generated by a thiri lifting wing of arbitrary planform flying at supersonic speed on a point placed on the wing plane inside its planform,1 or both on and above the wing plane.2 This point must be influenced by two leading edges, one supersonic and the other partially subsonic. Although these authors followed different approaches, their methods concur in showing the existence of a perfectly defined cancellation zone. In this Note, the Evvard approach is generalized to the case solved by Krasilshchikova. Circumventing the latter's lengthy and somewhat complex approach, Evvard's simple method seems to be useful at least for educational purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the experimental results of an unconventional joined-wing aircraft configuration are presented. The test model uses two different wings, forward and rear, both joined in tandem and forming diamond shapes both in plant and front views. The wings are joined in such a way that it is possible to change the rear wing dihedral angle values and the rear wing sweep angle values in 25 different positions that modify the relative distance and the relative height between the wings. To measure the system aerodynamic coefficients itis necessary to perform wind tunnel tests. The datapresented corresponds to the lift, drag and induced drag aerodynamic coefficients, as well as the aerodynamic efficiency and the parameter for minimum required power, from the calculated values of the lift and drag time series measured by a 6-axis force and torque sensor. The results show the influence on the aerodynamic coefficients of the rear wing sweep and dihedral angles parameters. As a main result, it can be concluded that, in general terms, the lift and induced drag aerodynamic coefficients values decrease as both the distance and height between the wings increase, on the other hand, the total drag aerodynamic coefficient decreases if the distance between the wings increases, but nevertheless shows a slight tendency to increase if the height of the rear wing increases, whereas the aerodynamic efficiency and the parameter for minimum required power increase if the distance between the wings increases