14 resultados para geostatistical
em Universidad Politécnica de Madrid
Resumo:
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulationchamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Spatial variability of Vertisol properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns. The objectives of the present work were (i) to quantify the spatial structure of different physical properties collected from a Vertisol, (ii) to search for potential correlations between different spatial patterns and (iii) to identify relevant components through multivariate spatial analysis. The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years. We used six soil properties collected from a squared grid (225 points) (penetrometer resistance (PR), total porosity, fragmentation dimension (Df), vertical electrical conductivity (ECv), horizontal electrical conductivity (ECh) and soil water content (WC)). All the original data sets were z-transformed before geostatistical analysis. Three different types of semivariogram models were necessary for fitting individual experimental semivariograms. This suggests the different natures of spatial variability patterns. Soil water content rendered the largest nugget effect (C0 = 0.933) while soil total porosity showed the largest range of spatial correlation (A = 43.92 m). The bivariate geostatistical analysis also rendered significant cross-semivariance between different paired soil properties. However, four different semivariogram models were required in that case. This indicates an underlying co-regionalization between different soil properties, which is of interest for delineating management zones within sugarcane fields. Cross-semivariograms showed larger correlation ranges than individual, univariate, semivariograms (A ≥ 29 m). All the findings were supported by multivariate spatial analysis, which showed the influence of soil tillage operations, harvesting machinery and irrigation water distribution on the status of the investigated area.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
En esta tesis se presenta una nueva aproximación para la realización de mapas de calidad del aire, con objeto de que esta variable del medio físico pueda ser tenida en cuenta en los procesos de planificación física o territorial. La calidad del aire no se considera normalmente en estos procesos debido a su composición y a la complejidad de su comportamiento, así como a la dificultad de contar con información fiable y contrastada. Además, la variabilidad espacial y temporal de las medidas de calidad del aire hace que sea difícil su consideración territorial y exige la georeferenciación de la información. Ello implica la predicción de medidas para lugares del territorio donde no existen datos. Esta tesis desarrolla un modelo geoestadístico para la predicción de valores de calidad del aire en un territorio. El modelo propuesto se basa en la interpolación de las medidas de concentración de contaminantes registradas en las estaciones de monitorización, mediante kriging ordinario, previa homogeneización de estos datos para eliminar su carácter local. Con el proceso de eliminación del carácter local, desaparecen las tendencias de las series muestrales de datos debidas a las variaciones temporales y espaciales de la calidad del aire. La transformación de los valores de calidad del aire en cantidades independientes del lugar de muestreo, se realiza a través de parámetros de uso del suelo y de otras variables características de la escala local. Como resultado, se obtienen unos datos de entrada espacialmente homogéneos, que es un requisito fundamental para la utilización de cualquier algoritmo de interpolación, en concreto, del kriging ordinario. Después de la interpolación, se aplica una retransformación de los datos para devolver el carácter local al mapa final. Para el desarrollo del modelo, se ha elegido como área de estudio la Comunidad de Madrid, por la disponibilidad de datos reales. Estos datos, valores de calidad del aire y variables territoriales, se utilizan en dos momentos. Un momento inicial, donde se optimiza la selección de los parámetros más adecuados para la eliminación del carácter local de las medidas y se desarrolla cada una de las etapas del modelo. Y un segundo momento, en el que se aplica en su totalidad el modelo desarrollado y se contrasta su eficacia predictiva. El modelo se aplica para la estimación de los valores medios y máximos de NO2 del territorio de estudio. Con la implementación del modelo propuesto se acomete la territorialización de los datos de calidad del aire con la reducción de tres factores clave para su efectiva integración en la planificación territorial o en el proceso de toma de decisiones asociado: incertidumbre, tiempo empleado para generar la predicción y recursos (datos y costes) asociados. El modelo permite obtener una predicción de valores del contaminante objeto de análisis en unas horas, frente a los periodos de modelización o análisis requeridos por otras metodologías. Los recursos necesarios son mínimos, únicamente contar con los datos de las estaciones de monitorización del territorio que, normalmente, están disponibles en las páginas web viii institucionales de los organismos gestores de las redes de medida de la calidad del aire. Por lo que respecta a las incertidumbres de la predicción, puede decirse que los resultados del modelo propuesto en esta tesis son estadísticamente muy correctos y que los errores medios son, en general, similares o menores que los encontrados con la aplicación de las metodologías existentes. ABSTRACT This thesis presents a new approach for mapping air quality, so that this variable of physical environment can be taken into account in physical or territorial planning. Ambient air quality is not normally considered in territorial planning mainly due to the complexity of its composition and behavior and the difficulty of counting with reliable and contrasted information. In addition, the wide spatial and temporal variability of the measurements of air quality makes his territorial consideration difficult and requires georeferenced information. This involves predicting measurements in the places of the territory where there are no data. This thesis develops a geostatistical model for predicting air quality values in a territory. The proposed model is based on the interpolation of measurements of pollutants from the monitoring stations, using ordinary kriging, after a detrending or removal of the local character of sampling values process. With the detrending process, the local character of the time series of sampling data, due to temporal and spatial variations of air quality, is removed. The transformation of the air quality values into site-independent quantities is performed using land use parameters and other characteristic parameters of local scale. This detrending of the monitoring data process results in a spatial homogeneous input set which is a prerequisite for a correct use of any interpolation algorithm, particularly, ordinary kriging. After the interpolation step, a retrending or retransformation is applied in order to incorporate the local character in the final map at places where no monitoring data is available. For the development of this model, the Community of Madrid is chosen as study area, because of the availability of actual data. These data, air quality values and local parameters, are used in two moments. A starting point, to optimize the selection of the most suitable indicators for the detrending process and to develop each one of the model stages. And a second moment, to fully implement the developed model and to evaluate its predictive power. The model is applied to estimate the average and maximum values of NO2 in the study territory. With the implementation of the proposed model, the territorialization of air quality data is undertaken with the reduction in three key factors for the effective integration of this parameter in territorial planning or in the associated decision making process: uncertainty, time taken to generate the prediction and associated resources (data and costs). This model allows the prediction of pollutant values in hours, compared to the implementation time periods required for other modeling or analysis methodologies. The required resources are also minimal, only having data from monitoring stations in the territory, that are normally available on institutional websites of the authorities responsible for air quality networks control and management. With regard to the prediction uncertainties, it can be concluded that the results of the proposed model are statistically very accurate and the mean errors are generally similar to or lower than those found with the application of existing methodologies.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
El principal objetivo de este estudio es la evaluación de la distribución espacial de los parámetros acústicos en un recinto a través de la aplicación de técnicas geoestadísticas como el método Kriging. Mediante el uso de la herramienta de análisis espacial ArcMap, perteneciente a la plataforma ArcGIS, se ha analizado el comportamiento acústico del Salón de Actos común a la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST) y la Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), ambas situadas en el Campus Sur de la Universidad Politécnica de Madrid. Se han realizado mediciones in-situ del recinto no ocupado utilizando la herramienta de medición DIRAC Room Acoustics y el método de la respuesta impulsiva integrada, extrayéndose los parámetros acústicos de tiempo de reverberación (RT), tiempo de reverberación inicial (EDT), fuerza sonora relativa (Grel), claridad (C80), tiempo central (Ts), definición (D50) e Índice de Transmisión Rápida de la Palabra (RASTI). Se ha analizado la adecuación de los valores observados de Grel, C80 y Ts al modelo teórico de Barron y estimado, mediante el método Kriging Ordinario, el conjunto de parámetros medidos en el recinto, obteniéndose los semivariograma y mapas de estimación correspondientes. Además, se ha evaluado la calidad de la estimación en base a un número de puntos de medición reducido. A la vista de los resultados obtenidos, en general, el método Kriging puede considerarse un buen interpolador de los parámetros acústicos en un recinto, observándose que los parámetros que evalúan relaciones energéticas, especialmente la fuerza sonora relativa (Grel) proporcionan mejores estimaciones en comparación con aquellos relacionados con la reverberación y la inteligibilidad del habla. El coeficiente de determinación (R2) constituye una medida útil para evaluar la precisión de la estimación. Además, la entropía de los datos observados puede ser un buen indicador a priori de la precisión de la estimación. Asimismo, se ha demostrado que, basándose en un reducido número de puntos de medición, es posible obtener una estimación precisa de los parámetros acústicos de fuerza sonora relativa (Grel) y tiempo central (Ts). ABSTRACT. This project aims to evaluate the feasibility of using geostatistical techniques such as Kriging on the analysis of the spatial distribution of the acoustic parameters in rooms. The acoustic behaviour of the Assembly Hall of the ETSIST and ETSISI (Universidad Politécnica de Madrid) is investigated using ArcMap, which is the main component of ArcGIS suite of geospatial processing programs. For this purpose, in-situ acoustic measurements are carried out in the unoccupied room using DIRAC Room Acoustics software. The following acoustic parameters are measured by means of the integrated impulse response method for further examination: Reverberation Time (RT), Early Decay Time (EDT), Relative Strength (Grel), Clarity (C80), Centre Time (Ts), Definition (D50) and Rapid Speech Transmission Index (RASTI). Goodness-of-fit of measured Grel, C80 and Ts values to Barron’s theory is determined and Ordinary Kriging is applied to all the measured parameters in order to calculate the semivariogram and prediction surfaces. The prediction performance is also analysed when significantly fewer receiver positions are used for the prediction. The experimental results obtained lead to conclude that Kriging can be successfully applied to room acoustics. Energy\based acoustic parameters can be estimated with higher accuracy compared to those related to reverberation and speech intelligibility. Coefficient of determination (R2) is a reliable statistic for assessing the prediction accuracy, for which measured data entropy can also be a good a priori indicator. Furthermore, based on fewer receiver positions, it is demonstrated that accurate predictions of Grel and Ts can be achieved.
Resumo:
El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.
Resumo:
La estimación de la biomasa de la vegetación terrestre en bosque tropical no sólo es un área de investigación en rápida expansión, sino también es un tema de gran interés para reducir las emisiones de carbono asociadas a la deforestación y la degradación forestal (REDD+). Las estimaciones de densidad de carbono sobre el suelo (ACD) en base a inventarios de campo y datos provenientes de sensores aerotransportados, en especial con sensores LiDAR, han conducido a un progreso sustancial en el cartografiado a gran escala de las reservas de carbono forestal. Sin embargo, estos mapas de carbono tienen incertidumbres considerables, asociadas generalmente al proceso de calibración del modelo de regresión utilizado para producir los mapas. En esta tesis se establece una metodología para la calibración y validación de un modelo general de estimación de ACD usando LiDAR en un sector del Parque Nacional Yasuní en Ecuador. En el proceso de calibración del modelo se considera el tamaño y la ubicación de las parcelas, la influencia de la topografía y la distribución espacial de la biomasa. Para el análisis de los datos se utilizan técnicas geoestadísticas en combinación con variables geomorfométricas derivadas de datos LiDAR, y se propone un esquema de muestreo estratificado por posiciones topográficas (valle, ladera y cima). La validación del modelo general para toda la zona de estudio presentó valores de RMSE = 5.81 Mg C ha-1, R2 = 0.94 y sesgo = 0.59, mientras que, al considerar las posiciones topográficas, el modelo presentó valores de RMSE = 1.67 Mg C ha-1, R2 = 0.98 y sesgo = 0.23 para el valle; RMSE = 3.13 Mg C ha-1, R2 = 0.98 y sesgo = - 0.34 para la ladera; y RMSE = 2.33 Mg C ha-1, R2 = 0.97 y sesgo = 0.74 para la cima. Los resultados obtenidos demuestran que la metodología de muestreo estratificado por posiciones topográficas propuesto, permite calibrar de manera efectiva el modelo general con las estimaciones de ACD en campo, logrando reducir el RMSE y el sesgo. Los resultados muestran el potencial de los datos LiDAR para caracterizar la estructura vertical de la vegetación en un bosque altamente diverso, permitiendo realizar estimaciones precisas de ACD, y conocer patrones espaciales continuos de la distribución de la biomasa aérea y del contenido de carbono en la zona de estudio. ABSTRACT Estimating biomass of terrestrial vegetation in tropical forest is not only a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD+). The aboveground carbon density estimates (ACD) based on field inventories and airborne sensors, especially LiDAR sensors have led to a substantial progress in large-scale mapping of forest carbon stocks. However, these carbon maps have considerable uncertainties generally associated with the calibration of the regression model used to produce these maps. This thesis establishes a methodology for calibrating and validating a general ACD estimation model using LiDAR in Ecuador´s Yasuní National Park. The size and location of the plots are considered in the model calibration phase as well as the influence of topography and spatial distribution of biomass. Geostatistical analysis techniques are used in combination with geomorphometrics variables derived from LiDAR data, and then a stratified sampling scheme considering topographic positions (valley, slope and ridge) is proposed. The validation of the general model for the study area showed values of RMSE = 5.81 Mg C ha-1, R2 = 0.94 and bias = 0.59, while considering the topographical positions, the model showed values of RMSE = 1.67 Mg C ha-1, R2 = 0.98 and bias = 0.23 for the valley; RMSE = 3.13 Mg C ha-1, R2 = 0.98 and bias = - 0.34 for the slope; and RMSE = 2.33 Mg C ha-1, R2 = 0.97 and bias = 0.74 for the ridge. The results show that the stratified sampling methodology taking into account topographic positions, effectively calibrates the general model with field estimates of ACD, reducing RMSE and bias. The results show the potential of LiDAR data to characterize the vertical structure of vegetation in a highly diverse forest, allowing accurate estimates of ACD, and knowing continuous spatial patterns of biomass distribution and carbon stocks in the study area.
Resumo:
El presente estudio se fundamenta en la investigación-acción-participativa (IAP), para buscar alternativas que tiendan al desarrollo local de un territorio. Se centra en la cuenca hidrográfica del rio Manglaralto-Santa Elena-Ecuador, aplicando un sistema metodológico participativo que considera las características peculiares del territorio, que se analizan geoespacialmente reconociendo la influencia de la dinámica de sus cambios y observando los móviles que la propiciaban. A través de mecanismos participativos, se conectan los aspectos técnicos para el conocimiento y el aprovechamiento racional del acuífero costero, con los valores de los habitantes del territorio, para mejorar su abastecimiento de agua y crear nuevas condiciones y oportunidades en el camino del desarrollo local, vislumbrando la sostenibilidad. Cabe indicar que el ente administrativo y propulsor es la Junta de Agua Potable Regional Manglaralto (JAPRM). La hipótesis del estudio considera, que los métodos participativos generan en la comunidad una respuesta basada en su identidad y sus deseos de mejorar, que propiciará una gestión del acuífero costero que conlleve al desarrollo local. Otra hipótesis complementaria estipula que las estrategias del gobierno respecto al turismo propicia un crecimiento en la demanda del agua del acuífero. En Manglaralto-Ecuador, una parroquia de 30.000 habitantes aproximadamente, donde la JAPRM, administra y suministra agua a 23.586 habitantes que cuenta en su organización, llevada por 6 representantes de las comunidades rurales que la conforman, empezaron hace 7 años a buscar una forma de lograr un cambio, de tener agua para el desarrollo de la comunidad. Buscaron ayuda por diferentes medios, políticos, económicas, sociales y encontraron como base fundamental a la cooperación con el Organismo Internacional de Energía Atómica (OIEA) y la Escuela Superior Politécnica del Litoral (ESPOL) para entrelazar aspectos técnicos, ambientales, sociales y culturales. La gestión del acuífero costero, desde la perspectiva del IAP repercute en el desarrollo de Manglaralto. También se realiza un análisis geoespacial-geoestadístico, para vislumbrar aspectos de cambios en el territorio ligados al crecimiento turístico, que afectan a la demanda del recurso agua proveniente del acuífero costero bajo la administración de la JAPRM. La tesis presenta el modelo integral y propio de la comunidad de Manglaralto, que refleja una evolución que alcanzó un apogeo en 2011 y parte del 2012, con 9 pozos de agua que daban servicio los 365 días del año, 24 horas al día ininterrumpidamente. Las condiciones externas (promociones turísticas de la ruta del Spondylus) han repercutido en nuevas problemáticas (crecimiento elevado de la demanda del agua). El acuífero costero se convierte en el emblema y móvil de solución, gracias a la gestión integral y a la interacción IAP que se amolda a la evolución de las condiciones, buscando soluciones para la comunidad y su entorno. El modelo integral del territorio con la participación de sus pobladores, considera el aspecto turístico, como un agente que propicia la mayor demanda del agua. Situación a la que hay que dar respuesta mediante la observación-reflexión en el ciclo del IAP para generar nuevas directrices estratégicas y gestionar el desarrollo local. ABSTRACT The present study is based on the participatory action research (PAR) methodology in order to look for alternatives which tend to the local development of a territory. It focuses on the Manglaralto hydrographic river basin located in Santa Elena-Ecuador through the application of the participatory methodology which considers the peculiar characteristics of the territory. These are geospatially analyzed recognizing the influence of its dynamic of changes and observing the causes that originated them. Through the use of participatory mechanisms, technical aspects are connected for stimulating knowledge and rational use of the coastal aquifer with the values of inhabitants of the territory to improve the water supply and create new conditions of sustainability. It is important to point out that the administrative organism and promoter is the Manglaralto Regional Fresh Water Board (JAPRM). In Manglaralto-Ecuador, a parish of approximately 30,000 inhabitants, the MRFWB manages and supplies water to 23.586 inhabitants. This organization is composed by 6 representatives of rural communities. It started 7 years ago looking for a way to achieve a change, from obtaining water to developing the community. They seeked for help in different fields such as: political, economic and social and they found International Atomic Energy Agency (IAEA) and Escuela Superior Politécnica del Litoral (ESPOL) as a fundamental basis for cooperation to bond technical, environmental, social and cultural aspects. Management of coastal aquifer, from the PAR perspective affects the development of Manglaralto. Also, a geospatial and geostatistical analysis is carried out to distinguish change aspects in territories related to touristy growth which affects the demand of water obtained from the coastal aquifer under the management of the MRFWB. The thesis presents a comprehensive model that belongs to the Manglaralto community and reveals an evolution that reached a peak in 2011 and part of 2012, with 9 water wells that operated the 365 days of the year 24 hours a day without interruption. The external conditions (touristic packages of Spondylus route) have created new problems (higher demand of water). The coastal aquifer is a symbol and solution, thanks to the comprehensive management and PAR interaction which fits the evolution of conditions, looking for solutions for the community and its surroundings. The comprehensive model of territory with the participation of inhabitants considers the touristic aspect as an agent which brings about a higher demand of water. This situation requests a response through the observation-reflection in the PAR cycle to generate new strategic guidelines and promote the local development.
Resumo:
Los efectos del cambio global sobre los bosques son una de las grandes preocupaciones de la sociedad del siglo XXI. Algunas de sus posibles consecuencias como son los efectos en la producción, la sostenibilidad, la pérdida de biodiversidad o cambios en la distribución y ensamblaje de especies forestales pueden tener grandes repercusiones sociales, ecológicas y económicas. La detección y seguimiento de estos efectos constituyen uno de los retos a los que se enfrentan en la actualidad científicos y gestores forestales. En base a la comparación de series históricas del Inventario Forestal Nacional Español (IFN), esta tesis trata de arrojar luz sobre algunos de los impactos que los cambios socioeconómicos y ambientales de las últimas décadas han generado sobre nuestros bosques. En primer lugar, esta tesis presenta una innovadora metodología con base geoestadística que permite la comparación de diferentes ciclos de inventario sin importar los diferentes métodos de muestreo empleados en cada uno de ellos (Capítulo 3). Esta metodología permite analizar cambios en la dinámica y distribución espacial de especies forestales en diferentes gradientes geográficos. Mediante su aplicación, se constatarán y cuantificarán algunas de las primeras evidencias de cambio en la distribución altitudinal y latitudinal de diferentes especies forestales ibéricas, que junto al estudio de su dinámica poblacional y tasas demográficas, ayudarán a testar algunas hipótesis biogeográficas en un escenario de cambio global en zonas de especial vulnerabilidad (Capítulos 3, 4 y 5). Por último, mediante la comparación de ciclos de parcelas permanentes del IFN se ahondará en el conocimiento de la evolución en las últimas décadas de especies invasoras en los ecosistemas forestales del cuadrante noroccidental ibérico, uno de los más afectados por la invasión de esta flora (Capítulo 6). ABSTRACT The effects of global change on forests are one of the major concerns of the XXI century. Some of the potential impacts of global change on forest growth, productivity, biodiversity or changes in species assembly and spatial distribution may have great ecological and economic consequences. The detection and monitoring of these effects are some of the major challenges that scientists and forest managers face nowadays. Based on the comparison of historical series of the Spanish National Forest Inventory (NFI), this thesis tries to shed some light on some of the impacts driven by recent socio-economic and environmental changes on our forest ecosystems. Firstly, this thesis presents an innovative methodology based on geostatistical techniques that allows the comparison of different NFI cycles regardless of the different sampling methods used in each of them (Chapter 3). This methodology, in conjunction with other statistical techniques, allows to analyze changes in the spatial distribution and population dynamics of forest species along different geographic gradients. By its application, this thesis presents some of the first evidences of changes in species distribution along different geographical gradients in the Iberian Peninsula. The analysis of these findings, of species population dynamics and demographic rates will help to test some biogeographical hypothesis on forests under climate change scenarios in areas of particular vulnerability (Chapters 3, 4 and 5). Finally, by comparing NFI cycles with permanent plots, this thesis increases our knowledge about the patterns and processes associated with the recent evolution of invasive species in the forest ecosystems of North-western Iberia, one of the areas most affected by the invasion of allien species at national scale (Chapter 6).
Resumo:
La investigación de esta tesis se centra en el estudio de técnicas geoestadísticas y su contribución a una mayor caracterización del binomio factores climáticos-rendimiento de un cultivo agrícola. El inexorable vínculo entre la variabilidad climática y la producción agrícola cobra especial relevancia en estudios sobre el cambio climático o en la modelización de cultivos para dar respuesta a escenarios futuros de producción mundial. Es información especialmente valiosa en sistemas operacionales de monitoreo y predicción de rendimientos de cultivos Los cuales son actualmente uno de los pilares operacionales en los que se sustenta la agricultura y seguridad alimentaria mundial; ya que su objetivo final es el de proporcionar información imparcial y fiable para la regularización de mercados. Es en este contexto, donde se quiso dar un enfoque alternativo a estudios, que con distintos planteamientos, analizan la relación inter-anual clima vs producción. Así, se sustituyó la dimensión tiempo por la espacio, re-orientando el análisis estadístico de correlación interanual entre rendimiento y factores climáticos, por el estudio de la correlación inter-regional entre ambas variables. Se utilizó para ello una técnica estadística relativamente nueva y no muy aplicada en investigaciones similares, llamada regresión ponderada geográficamente (GWR, siglas en inglés de “Geographically weighted regression”). Se obtuvieron superficies continuas de las variables climáticas acumuladas en determinados periodos fenológicos, que fueron seleccionados por ser factores clave en el desarrollo vegetativo de un cultivo. Por ello, la primera parte de la tesis, consistió en un análisis exploratorio sobre comparación de Métodos de Interpolación Espacial (MIE). Partiendo de la hipótesis de que existe la variabilidad espacial de la relación entre factores climáticos y rendimiento, el objetivo principal de esta tesis, fue el de establecer en qué medida los MIE y otros métodos geoestadísticos de regresión local, pueden ayudar por un lado, a alcanzar un mayor entendimiento del binomio clima-rendimiento del trigo blando (Triticum aestivum L.) al incorporar en dicha relación el componente espacial; y por otro, a caracterizar la variación de los principales factores climáticos limitantes en el crecimiento del trigo blando, acumulados éstos en cuatro periodos fenológicos. Para lleva a cabo esto, una gran carga operacional en la investigación de la tesis consistió en homogeneizar y hacer los datos fenológicos, climáticos y estadísticas agrícolas comparables tanto a escala espacial como a escala temporal. Para España y los Bálticos se recolectaron y calcularon datos diarios de precipitación, temperatura máxima y mínima, evapotranspiración y radiación solar en las estaciones meteorológicas disponibles. Se dispuso de una serie temporal que coincidía con los mismos años recolectados en las estadísticas agrícolas, es decir, 14 años contados desde 2000 a 2013 (hasta 2011 en los Bálticos). Se superpuso la malla de información fenológica de cuadrícula 25 km con la ubicación de las estaciones meteorológicas con el fin de conocer los valores fenológicos en cada una de las estaciones disponibles. Hecho esto, para cada año de la serie temporal disponible se calcularon los valores climáticos diarios acumulados en cada uno de los cuatro periodos fenológicos seleccionados P1 (ciclo completo), P2 (emergencia-madurez), P3 (floración) y P4 (floraciónmadurez). Se calculó la superficie interpolada por el conjunto de métodos seleccionados en la comparación: técnicas deterministas convencionales, kriging ordinario y cokriging ordinario ponderado por la altitud. Seleccionados los métodos más eficaces, se calculó a nivel de provincias las variables climatológicas interpoladas. Y se realizaron las regresiones locales GWR para cuantificar, explorar y modelar las relaciones espaciales entre el rendimiento del trigo y las variables climáticas acumuladas en los cuatro periodos fenológicos. Al comparar la eficiencia de los MIE no destaca una técnica por encima del resto como la que proporcione el menor error en su predicción. Ahora bien, considerando los tres indicadores de calidad de los MIE estudiados se han identificado los métodos más efectivos. En el caso de la precipitación, es la técnica geoestadística cokriging la más idónea en la mayoría de los casos. De manera unánime, la interpolación determinista en función radial (spline regularizado) fue la técnica que mejor describía la superficie de precipitación acumulada en los cuatro periodos fenológicos. Los resultados son más heterogéneos para la evapotranspiración y radiación. Los métodos idóneos para estas se reparten entre el Inverse Distance Weighting (IDW), IDW ponderado por la altitud y el Ordinary Kriging (OK). También, se identificó que para la mayoría de los casos en que el error del Ordinary CoKriging (COK) era mayor que el del OK su eficacia es comparable a la del OK en términos de error y el requerimiento computacional de este último es mucho menor. Se pudo confirmar que existe la variabilidad espacial inter-regional entre factores climáticos y el rendimiento del trigo blando tanto en España como en los Bálticos. La herramienta estadística GWR fue capaz de reproducir esta variabilidad con un rendimiento lo suficientemente significativo como para considerarla una herramienta válida en futuros estudios. No obstante, se identificaron ciertas limitaciones en la misma respecto a la información que devuelve el programa a nivel local y que no permite desgranar todo el detalle sobre la ejecución del mismo. Los indicadores y periodos fenológicos que mejor pudieron reproducir la variabilidad espacial del rendimiento en España y Bálticos, arrojaron aún, una mayor credibilidad a los resultados obtenidos y a la eficacia del GWR, ya que estaban en línea con el conocimiento agronómico sobre el cultivo del trigo blando en sistemas agrícolas mediterráneos y norteuropeos. Así, en España, el indicador más robusto fue el balance climático hídrico Climatic Water Balance) acumulado éste, durante el periodo de crecimiento (entre la emergencia y madurez). Aunque se identificó la etapa clave de la floración como el periodo en el que las variables climáticas acumuladas proporcionaban un mayor poder explicativo del modelo GWR. Sin embargo, en los Bálticos, países donde el principal factor limitante en su agricultura es el bajo número de días de crecimiento efectivo, el indicador más efectivo fue la radiación acumulada a lo largo de todo el ciclo de crecimiento (entre la emergencia y madurez). Para el trigo en regadío no existe ninguna combinación que pueda explicar más allá del 30% de la variación del rendimiento en España. Poder demostrar que existe un comportamiento heterogéneo en la relación inter-regional entre el rendimiento y principales variables climáticas, podría contribuir a uno de los mayores desafíos a los que se enfrentan, a día de hoy, los sistemas operacionales de monitoreo y predicción de rendimientos de cultivos, y éste es el de poder reducir la escala espacial de predicción, de un nivel nacional a otro regional. ABSTRACT This thesis explores geostatistical techniques and their contribution to a better characterization of the relationship between climate factors and agricultural crop yields. The crucial link between climate variability and crop production plays a key role in climate change research as well as in crops modelling towards the future global production scenarios. This information is particularly important for monitoring and forecasting operational crop systems. These geostatistical techniques are currently one of the most fundamental operational systems on which global agriculture and food security rely on; with the final aim of providing neutral and reliable information for food market controls, thus avoiding financial speculation of nourishments of primary necessity. Within this context the present thesis aims to provide an alternative approach to the existing body of research examining the relationship between inter-annual climate and production. Therefore, the temporal dimension was replaced for the spatial dimension, re-orienting the statistical analysis of the inter-annual relationship between crops yields and climate factors to an inter-regional correlation between these two variables. Geographically weighted regression, which is a relatively new statistical technique and which has rarely been used in previous research on this topic was used in the current study. Continuous surface values of the climate accumulated variables in specific phenological periods were obtained. These specific periods were selected because they are key factors in the development of vegetative crop. Therefore, the first part of this thesis presents an exploratory analysis regarding the comparability of spatial interpolation methods (SIM) among diverse SIMs and alternative geostatistical methodologies. Given the premise that spatial variability of the relationship between climate factors and crop production exists, the primary aim of this thesis was to examine the extent to which the SIM and other geostatistical methods of local regression (which are integrated tools of the GIS software) are useful in relating crop production and climate variables. The usefulness of these methods was examined in two ways; on one hand the way this information could help to achieve higher production of the white wheat binomial (Triticum aestivum L.) by incorporating the spatial component in the examination of the above-mentioned relationship. On the other hand, the way it helps with the characterization of the key limiting climate factors of soft wheat growth which were analysed in four phenological periods. To achieve this aim, an important operational workload of this thesis consisted in the homogenization and obtention of comparable phenological and climate data, as well as agricultural statistics, which made heavy operational demands. For Spain and the Baltic countries, data on precipitation, maximum and minimum temperature, evapotranspiration and solar radiation from the available meteorological stations were gathered and calculated. A temporal serial approach was taken. These temporal series aligned with the years that agriculture statistics had previously gathered, these being 14 years from 2000 to 2013 (until 2011 for the Baltic countries). This temporal series was mapped with a phenological 25 km grid that had the location of the meteorological stations with the objective of obtaining the phenological values in each of the available stations. Following this procedure, the daily accumulated climate values for each of the four selected phenological periods were calculated; namely P1 (complete cycle), P2 (emergency-maturity), P3 (flowering) and P4 (flowering- maturity). The interpolated surface was then calculated using the set of selected methodologies for the comparison: deterministic conventional techniques, ordinary kriging and ordinary cokriging weighted by height. Once the most effective methods had been selected, the level of the interpolated climate variables was calculated. Local GWR regressions were calculated to quantify, examine and model the spatial relationships between soft wheat production and the accumulated variables in each of the four selected phenological periods. Results from the comparison among the SIMs revealed that no particular technique seems more favourable in terms of accuracy of prediction. However, when the three quality indicators of the compared SIMs are considered, some methodologies appeared to be more efficient than others. Regarding precipitation results, cokriging was the most accurate geostatistical technique for the majority of the cases. Deterministic interpolation in its radial function (controlled spline) was the most accurate technique for describing the accumulated precipitation surface in all phenological periods. However, results are more heterogeneous for the evapotranspiration and radiation methodologies. The most appropriate technique for these forecasts are the Inverse Distance Weighting (IDW), weighted IDW by height and the Ordinary Kriging (OK). Furthermore, it was found that for the majority of the cases where the Ordinary CoKriging (COK) error was larger than that of the OK, its efficacy was comparable to that of the OK in terms of error while the computational demands of the latter was much lower. The existing spatial inter-regional variability between climate factors and soft wheat production was confirmed for both Spain and the Baltic countries. The GWR statistic tool reproduced this variability with an outcome significative enough as to be considered a valid tool for future studies. Nevertheless, this tool also had some limitations with regards to the information delivered by the programme because it did not allow for a detailed break-down of its procedure. The indicators and phenological periods that best reproduced the spatial variability of yields in Spain and the Baltic countries made the results and the efficiency of the GWR statistical tool even more reliable, despite the fact that these were already aligned with the agricultural knowledge about soft wheat crop under mediterranean and northeuropean agricultural systems. Thus, for Spain, the most robust indicator was the Climatic Water Balance outcome accumulated throughout the growing period (between emergency and maturity). Although the flowering period was the phase that best explained the accumulated climate variables in the GWR model. For the Baltic countries where the main limiting agricultural factor is the number of days of effective growth, the most effective indicator was the accumulated radiation throughout the entire growing cycle (between emergency and maturity). For the irrigated soft wheat there was no combination capable of explaining above the 30% of variation of the production in Spain. The fact that the pattern of the inter-regional relationship between the crop production and key climate variables is heterogeneous within a country could contribute to one is one of the greatest challenges that the monitoring and forecasting operational systems for crop production face nowadays. The present findings suggest that the solution may lay in downscaling the spatial target scale from a national to a regional level.
Resumo:
Las mineralizaciones de oro de Galicia Occidental ligadas a grandes estructuras comienzan a ser interpretadas de manera más rigurosa, al mismo tiempo que la continuada elevación de las cotizaciones del oro han hecho más atractiva la reactivación de áreas hasta ahora casi olvidadas. El propósito de esta investigación participa de las razones anteriores. La zona de cizalla Busto Limideiro se inscribe en una de estas estructuras, la cizalla Santa Comba-Punta Langosteira, con la que se relacionan un importante número de yacimientos auríferos entre los que destacan Corcoesto y Monte Piñor. Por su situación geológica, estos indicios se enmarcan en el Macizo Ibérico, en la Zona de Galicia Tras-os-Montes. Este trabajo aporta más conocimiento sobre un modelo general del oro de los yacimientos del noroeste español, integrándolo en los yacimientos de oro orogénico del Varisco europeo. Este estudio ha supuesto un importante esfuerzo investigador centrado sobre de los procesos genéticos que han dado lugar a las mineralizaciones auríferas. Los estudios petrográficos, metalogénicos, geoquímicos, microtemométricos y el análisis de isótopos han permitido establecer un modelo general y otros más específicos sobre la existencia y condiciones de formación en la concentración del oro mineralógico. De esta forma se ha caracterizado su mineralogía, quimismo, edad, y naturaleza de los paleofluidos que han intervinieron en su formación. De los resultados obtenidos se destaca que estas mineralizaciones se encuentran fuertemente ligadas a las estructuras y transformaciones físicas y químicas de las rocas afectadas por la banda de cizalla. Derivada de esta situación, se comprende la disposición espacial, a diversas escalas, con estructuras claramente en la transición del dominio dúctil a frágil. Además, resulta evidente, a escala macro y microscópica, el emplazamiento preferente del oro en estructuras de deformación miloníticas. Los estudios anteriores posibilitan formalizar un modelo de génesis para el yacimiento de Monte Piñor que resulta compatible con el establecido por Groves (1998), e incluirlas en un mismo contexto, como yacimientos de oro orogénico mesotermales, válido para el conjunto de todos los de la zona de cizalla Busto Limideiro. El estudio no omite la consideración geoestadística de este yacimiento, justificando la elección de direcciones de anisotropía explicadas por consideraciones de carácter estructural. Con ello, buscando el lado práctico desde el punto de vista minero, esta investigación propone líneas generales de aplicación de actuación con sentido de exploración, contribuyendo a la puesta en valor del conocimiento de las mineralizaciones de oro del noroeste español. ABSTRACT Old and nearly forgotten gold mines from Western Galicia are currently attractive to be recovered due to both, the new strict interpretation of gold mineralization linked to Variscan large structures and the increasing gold prices. The shear zone Busto Limiderio is relevant as a part of a Variscan large structure, Santa Comba-Punta Langosteira, which is related with a high number of gold deposits as Corcoesto and Monte Piñor. For its geological situation, these signs are part of the Iberian Massif in the area of Galicia Tras-os-Montes. Hence, the main aim of this study is to provide additional and important knowledge of Busto Limiderio about the general model of gold deposits in the Spanish northwest, integrating them in the orogenic gold deposits of European Variscan, enabling to analyze the economic recovery possibility of this area. This thesis has been focused on the genetic processes that have led to the gold mineralization. Petrographic studies, metalogenic, geochemical, microthermometric and isotope analysis have allowed to establish a general and specific models about the existence and training conditions in the concentration of mineralogical gold. Consequently, the mineralogy, chemical characteristics, age, and nature of paleofluids that have participated in its formation have been characterized. The results showed that Busto Limiderio gold mineralization are strongly linked to the structures and physical and chemical transformations of affected rocks by the shear band. The mineralization spatial distribution at various scales is due to the link with the large structures in the ductile-to-brittle transition domain. Furthermore, this factor determine at macro and microscopic scale, the preferred location of the gold structures mylonitic deformation. Previous studies have permitted to establish a model of genesis for the site of Monte Piñor which is compatible with the established by Groves (1998), and also to include them in the same context as mesothermal orogenic gold deposits, valid throughout all of Busto Limideiro shear zone. This study does not omit consideration of the geostatistical deposit, justifying the choice of directions of anisotropy explained by structural considerations. This thesis concludes with general action guidelines for mining exploration, contributing to the enhancement of knowledge of Spanish gold mineralization northwest.