17 resultados para general circulation model (GCM) ground hydrolosic model (GHM) heat and vapor exchange between land and atmosphere
em Universidad Politécnica de Madrid
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
Corrosion of reinforcing steel in concrete due to chloride ingress is one of the main causes of the deterioration of reinforced concrete structures. Structures most affected by such a corrosion are marine zone buildings and structures exposed to de-icing salts like highways and bridges. Such process is accompanied by an increase in volume of the corrosión products on the rebarsconcrete interface. Depending on the level of oxidation, iron can expand as much as six times its original volume. This increase in volume exerts tensile stresses in the surrounding concrete which result in cracking and spalling of the concrete cover if the concrete tensile strength is exceeded. The mechanism by which steel embedded in concrete corrodes in presence of chloride is the local breakdown of the passive layer formed in the highly alkaline condition of the concrete. It is assumed that corrosion initiates when a critical chloride content reaches the rebar surface. The mathematical formulation idealized the corrosion sequence as a two-stage process: an initiation stage, during which chloride ions penetrate to the reinforcing steel surface and depassivate it, and a propagation stage, in which active corrosion takes place until cracking of the concrete cover has occurred. The aim of this research is to develop computer tools to evaluate the duration of the service life of reinforced concrete structures, considering both the initiation and propagation periods. Such tools must offer a friendly interface to facilitate its use by the researchers even though their background is not in numerical simulation. For the evaluation of the initiation period different tools have been developed: Program TavProbabilidade: provides means to carry out a probability analysis of a chloride ingress model. Such a tool is necessary due to the lack of data and general uncertainties associated with the phenomenon of the chloride diffusion. It differs from the deterministic approach because it computes not just a chloride profile at a certain age, but a range of chloride profiles for each probability or occurrence. Program TavProbabilidade_Fiabilidade: carries out reliability analyses of the initiation period. It takes into account the critical value of the chloride concentration on the steel that causes breakdown of the passive layer and the beginning of the propagation stage. It differs from the deterministic analysis in that it does not predict if the corrosion is going to begin or not, but to quantifies the probability of corrosion initiation. Program TavDif_1D: was created to do a one dimension deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick’second Law. Despite of the different FEM solver already developed in one dimension, the decision to create a new code (TavDif_1D) was taken because of the need to have a solver with friendly interface for pre- and post-process according to the need of IETCC. An innovative tool was also developed with a systematic method devised to compare the ability of the different 1D models to predict the actual evolution of chloride ingress based on experimental measurements, and also to quantify the degree of agreement of the models with each others. For the evaluation of the entire service life of the structure: a computer program has been developed using finite elements method to do the coupling of both service life periods: initiation and propagation. The program for 2D (TavDif_2D) allows the complementary use of two external programs in a unique friendly interface: • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. This program (TavDif_2D) is responsible to decide in each time step when and where to start applying the boundary conditions of fracture mechanics module in function of the amount of chloride concentration and corrosion parameters (Icorr, etc). This program is also responsible to verify the presence and the degree of fracture in each element to send the Information of diffusion coefficient variation with the crack width. • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. The advantages of the FEM with the interface provided by the tool are: • the flexibility to input the data such as material property and boundary conditions as time dependent function. • the flexibility to predict the chloride concentration profile for different geometries. • the possibility to couple chloride diffusion (initiation stage) with chemical and mechanical behavior (propagation stage). The OOFEM code had to be modified to accept temperature, humidity and the time dependent values for the material properties, which is necessary to adequately describe the environmental variations. A 3-D simulation has been performed to simulate the behavior of the beam on both, action of the external load and the internal load caused by the corrosion products, using elements of imbedded fracture in order to plot the curve of the deflection of the central region of the beam versus the external load to compare with the experimental data.
Resumo:
The rotation maize and dry bean provides the main food supply of smallholder farmers in Honduras. Crop model assessment of climate change impacts (2070?2099 compared to a 1961?1990 baseline) on a maize?dry bean rotation for several sites across a range of climatic zones and elevations in Honduras. Low productivity systems, together with an uncertain future climate, pose a high level of risk for food security. The cropping systems simulation dynamic model CropSyst was calibrated and validated upon field trail site at Zamorano, then run with baseline and future climate scenarios based upon general circulation models (GCM) and the ClimGen synthetic daily weather generator. Results indicate large uncertainty in crop production from various GCM simulations and future emissions scenarios, but generally reduced yields at low elevations by 0 % to 22 % in suitable areas for crop production and increased yield at the cooler, on the hillsides, where farming needs to reduce soil erosion with conservation techniques. Further studies are needed to investigate strategies to reduce impacts and to explore adaptation tactics.
Resumo:
La predicción de energÃa eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos paÃses han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energÃa eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadÃsticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodologÃa para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un Ãndice en cada paso temporal. Este Ãndice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodologÃa que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodologÃa se basa en el análisis de componentes principales (PCA) para la sÃntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodologÃa se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
This paper shows the development of a science-technological knowledge transfer model in Mexico, as a means to boost the limited relations between the scientific and industrial environments. The proposal is based on the analysis of eight organizations (research centers and firms) with varying degrees of skill in the practice of science-technological knowledge transfer, and carried out by the case study approach. The analysis highlights the synergistic use of the organizational and technological capabilities of each organization, as a means to identification of the knowledge transfer mechanisms best suited to enabling the establishment of cooperative processes, and achieve the R&D and innovation activities results.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Self-consciousness implies not only self or group recognition, but also real knowledge of one’s own identity. Self-consciousness is only possible if an individual is intelligent enough to formulate an abstract self-representation. Moreover, it necessarily entails the capability of referencing and using this elf-representation in connection with other cognitive features, such as inference, and the anticipation of the consequences of both one’s own and other individuals’ acts. In this paper, a cognitive architecture for self-consciousness is proposed. This cognitive architecture includes several modules: abstraction, self-representation, other individuals'representation, decision and action modules. It includes a learning process of self-representation by direct (self-experience based) and observational learning (based on the observation of other individuals). For model implementation a new approach is taken using Modular Artificial Neural Networks (MANN). For model testing, a virtual environment has been implemented. This virtual environment can be described as a holonic system or holarchy, meaning that it is composed of autonomous entities that behave both as a whole and as part of a greater whole. The system is composed of a certain number of holons interacting. These holons are equipped with cognitive features, such as sensory perception, and a simplified model of personality and self-representation. We explain holons’ cognitive architecture that enables dynamic self-representation. We analyse the effect of holon interaction, focusing on the evolution of the holon’s abstract self-representation. Finally, the results are explained and analysed and conclusions drawn.
Resumo:
The demand of new services, the emergence of new business models, insufficient innovation, underestimation of customer loyalty and reluctance to adopt new management are evidence of the deficiencies and the lack of research about the relations between patients and dental clinics. In this article we propose the structure of a model of Relationship Marketing (RM) in the dental clinic that integrates information from SERVQUAL, Customer Loyalty (CL) and activities of RM and combines the vision of dentist and patient. The first pilot study on dentists showed that: they recognize the value of maintaining better patients however they don't perform RM actions to retain them. They have databases of patients but not sophisticated enough as compared to RM tools. They perceive that the patients value "Assurance" and "Empathy" (two dimensions of service quality). Finally, they indicate that a loyal patient not necessarily pays more by the service. The proposed model will be validated using Fuzzy Logic simulation and the ultimate goal of this research line is contributing a new definition of CL.
Resumo:
Based on a previously reported logic cell structure (see SPIE, vol. 2038, p. 67-77, 1993), the two types of cells present at the inner and ganglion cell layers of the vertebrate retina and their intracellular response, as well as their connections with each other, have been simulated. These cells are amacrines and ganglion cells. The main scheme of the authors' configuration is shown in a figure. These two types of cells, as well as some of their possible interconnections, have been implemented with the authors' previously reported optical-processing element. As it has been shown, the authors' logic structure is able to process two optical input binary signals, being the output two logical functions. Moreover, if a delayed feedback from one of the two possible outputs to one or both of the inputs is introduced, a very different behaviour is obtained. Depending on the value of the time delay, an oscillatory output can be obtained from a constant optical input signal. Period and length pulses are dependent on delay values, both external and internal, as well as on other control signals. Moreover, a chaotic behaviour can be obtained too under certain conditions
Resumo:
This research addressed the development of a consolidated model designed especially to cover the security and usability attributes of a software product. As a starting point, we built a new usability model on the basis of well-known quality standards and models. We then used an existing security model to analyse the relationship between these two approaches. This analysis consisted of a systematic mapping study of the relationship between security and usability as global quality factors. We identified five relationship types: inverse, direct, relative, one-way inverse, and no relationship. Most authors agree that there is an inverse relationship between security and usability. However, this is not a unanimous finding, and this study unveils a number of open questions, like application domain dependency and the need to explore lower-level relationships between attribute subcharacteristics. In order to clarify the questions raised during the research, we conducted a second systematic mapping to further analyse the finer-grained structure of these factors, such as authentication as a subset of security and user efficiency as a subset of usability. The most relevant finding is that efficiency does not depend on the security level during the authentication process. There are other subfactors that require analysis. Accordingly, this research is the first part of a larger project to develop a full-blown consolidated model for security and usability.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differenti- ated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specif- ically, the direct relations between brain and spinal cord tis- sue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic- based damage criteria, simulated function-based damage cri- teria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus provid- ing a link between mechanical trauma and subsequent func- tional deficits.
Resumo:
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits