6 resultados para gateways
em Universidad Politécnica de Madrid
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.
Resumo:
Wireless Sensor Networks (WSNs) are generally used to collect information from the environment. The gathered data are delivered mainly to sinks or gateways that become the endpoints where applications can retrieve and process such data. However, applications would also expect from a WSN an event-driven operational model, so that they can be notified whenever occur some specific environmental changes instead of continuously analyzing the data provided periodically. In either operational model, WSNs represent a collection of interconnected objects, as outlined by the Internet of Things. Additionally, in order to fulfill the Internet of Things principles, Wireless Sensor Networks must have a virtual representation that allows indirect access to their resources, a model that should also include the virtualization of event sources in a WSN. Thus, in this paper a model for a virtual representation of event sources in a WSN is proposed. They are modeled as internet resources that are accessible by any internet application, following an Internet of Things approach. The model has been tested in a real implementation where a WSN has been deployed in an open neighborhood environment. Different event sources have been identified in the proposed scenario, and they have been represented following the proposed model.
Resumo:
Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated.
Resumo:
This is the final report on reproducibility@xsede, a one-day workshop held in conjunction with XSEDE14, the annual conference of the Extreme Science and Engineering Discovery Environment (XSEDE). The workshop's discussion-oriented agenda focused on reproducibility in large-scale computational research. Two important themes capture the spirit of the workshop submissions and discussions: (1) organizational stakeholders, especially supercomputer centers, are in a unique position to promote, enable, and support reproducible research; and (2) individual researchers should conduct each experiment as though someone will replicate that experiment. Participants documented numerous issues, questions, technologies, practices, and potentially promising initiatives emerging from the discussion, but also highlighted four areas of particular interest to XSEDE: (1) documentation and training that promotes reproducible research; (2) system-level tools that provide build- and run-time information at the level of the individual job; (3) the need to model best practices in research collaborations involving XSEDE staff; and (4) continued work on gateways and related technologies. In addition, an intriguing question emerged from the day's interactions: would there be value in establishing an annual award for excellence in reproducible research? Overview
Resumo:
El desarrollo de las redes IP ha marcado un creciente interés por unificar todas las comunicaciones sobre una misma infraestructura aprovechando así el cableado existente. Con esta idea nació la tecnología conocida como VoIP (Voice Over Internet Protocol) que consiste en la trasmisión de la voz sobre paquetes IP. El objetivo principal de este proyecto es el diseño e implementación de una infraestructura de voz sobre IP que utilice una red de datos existente. La primera parte del proyecto estará formada por un estudio detallado de los factores que influyen en esta tecnología: codecs, protocolos y otros factores a tener en cuenta. Tras esta parte, aprovechando la experiencia adquirida durante casi tres años en una empresa integradora de servicios, se realizará un caso de estudio en el que, bajo las premisas impuestas por un supuesto cliente, se diseñará una solución que cumpla todos los requisitos y aporte un valor añadido sobre el sistema de telefonía que posee el cliente. El diseño de la mejor solución se hará utilizando productos del fabricante Cisco Systems y, además del coste económico, se valorarán los esfuerzos personales que costará montar dicha solución, incluyendo un valor añadido como es el dotar de buzón de voz y mensajería a todos los usuarios. La última parte del caso de estudio consistirá en la implementación de la infraestructura anteriormente diseñada adquiriendo conocimientos sobre virtualización de servidores utilizando productos de la compañía VMWare (especialista en virtualización), instalación y parametrización de aplicativos de Cisco y, finalmente, la interconexión con la red pública a través de gateways para poder hacer llamadas al exterior. El proyecto finalizará con la presentación de unas conclusiones finales y la exposición de unas líneas futuras de trabajo. ABSTRACT. The IP network development has marked a growing interest in unifying all communications over the same infrastructure taking advantage of the existing wiring. From this idea, a technology was born known as VoIP (Voice Over Internet Protocol) which consists of the transmission of voice packets over the IP network. The main goal of this project is the design and implementation of a VoIP infrastructure for transmitting voice packets over the existing wired network infrastructure on the client. The first part of the project will consist of a detailed study of the factors influencing this technology: codecs, protocols, and other factors to consider. After this part, drawing on the experience gained during nearly three years in an integrated services company, a case study will be made under the premises imposed for a supposed client. A solution that serves all the requirements will be designed and provide an added value on the customer’s telephone system. The design of the best solution will be done using Cisco Systems products and besides the economic cost of the whole solution, the personal effort cost will be valued. The added value named before will be provided with two important applications such as voice mail and instant messaging for all users. The last part of the case study will consist in the implementation of an infrastructure designed to acquire knowledge about virtualization, using VMWare company products (specialist in virtualization), installation and configuration of applications from Cisco Systems and finally the interconnection with the public network through gateway routers in order to make external calls. The project will end with the presentation of final conclusions and exposing future working lines.