15 resultados para functional-characterization
em Universidad Politécnica de Madrid
Resumo:
Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease–inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum–Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.
Resumo:
In prokaryotes, nickel is an essential element participating in the structure of enzymes involved in multiple cellular processes. Nickel transport is a challenge for microorganisms since, although essential, high levels of this metal inside the cell are toxic. For this reason, bacteria have developed high-affinity nickel transporters as well as nickel-specific detoxification systems. Ultramafic soils, and soils contaminated with heavy metals are excellent sources of nickel resistant bacteria. Molecular analysis of strains isolated in the habitats has revealed novel genetic systems involved in adaptation to such hostile conditions.
Resumo:
A collection of Rhizobium leguminosarum bv. viciae strains isolated from ultramafic and contaminated soils in Italy and Germany, respectively, was analyzed for resistance to nickel and cobalt ions. These assays led to the identification of strain UPM1137, which is able to grow at high concentrations of nickel and cobalt. In order to identify genetic systems involved in the homeostasis to these metals, a random mutagenesis was carried out in UPM1137 by inserting a Tn5-derivative minitransposon. As a result 4313 transconjugants were obtained, being 39 of them (0.90%) unable to grow at 1.5 mM NiCl2. The identification of the transposon insertion site in these mutants showed that the disrupted genes encode proteins belonging to different functional categories, where the secreted and membrane proteins were the most numerous. The analysis of heavy metal resistance and phenotypes in symbiotic and free –living cells will define the contribution of these genes to metal homeostasis.
Resumo:
El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos hortícolas de mayor importancia económica en el territorio Español. Sin embargo, su producción está seriamente afectada por condiciones ambientales adversas como, salinidad, sequía y temperaturas extremas. Para resolver los problemas que se presentan en condiciones de estrés, se han empleado una serie de técnicas culturales que disminuyen sus efectos negativos, siendo de gran interés el desarrollo de variedades tolerantes. En este sentido la obtención y análisis de plantas transgénicas, ha supuesto un avance tecnológico, que ha facilitado el estudio y la evaluación de genes seleccionados en relación con la tolerancia al estrés. Estudios recientes han mostrado que el uso de genes reguladores como factores de transcripción (FTs) es una gran herramienta para obtener nuevas variedades de tomate con mayor tolerancia a estreses abióticos. Las proteínas DOF (DNA binding with One Finger) son una familia de FTs específica de plantas (Yangisawa, 2002), que están involucrados en procesos fisiológicos exclusivos de plantas como: asimilación del nitrógeno y fijación del carbono fotosintético, germinación de semilla, metabolismo secundario y respuesta al fotoperiodo pero su preciso rol en la tolerancia a estrés abiótico se desconoce en gran parte. El trabajo descrito en esta tesis tiene como objetivo estudiar genes reguladores tipo DOF para incrementar la tolerancia a estrés abiotico tanto en especies modelo como en tomate. En el primer capítulo de esta tesis se muestra la caracterización funcional del gen CDF3 de Arabidopsis, así como su papel en la respuesta a estrés abiótico y otros procesos del desarrollo. La expresión del gen AtCDF3 es altamente inducido por sequía, temperaturas extremas, salinidad y tratamientos con ácido abscísico (ABA). La línea de inserción T-DNA cdf3-1 es más sensible al estrés por sequía y bajas temperaturas, mientras que líneas transgénicas de Arabidopsis 35S::AtCDF3 aumentan la tolerancia al estrés por sequía, osmótico y bajas temperaturas en comparación con plantas wild-type (WT). Además, estas plantas presentan un incremento en la tasa fotosintética y apertura estomática. El gen AtCDF3 se localiza en el núcleo y que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional en ensayos de protoplastos de Arabidopsis. El dominio C-terminal de AtCDF3 es esencial para esta localización y su capacidad activación, la delección de este dominio reduce la tolerancia a sequía en plantas transgénicas 35S::AtCDF3. Análisis por microarray revelan que el AtCDF3 regula un set de genes involucrados en el metabolismo del carbono y nitrógeno. Nuestros resultados demuestran que el gen AtCDF3 juega un doble papel en la regulación de la respuesta a estrés por sequía y bajas temperaturas y en el control del tiempo de floración. En el segundo capítulo de este trabajo se lleva a cabo la identificación de 34 genes Dof en tomate que se pueden clasificar en base a homología de secuencia en cuatro grupos A-D, similares a los descritos en Arabidopsis. Dentro del grupo D se han identificado cinco genes DOF que presentan características similares a los Cycling Dof Factors (CDFs) de Arabidopsis. Estos genes son considerados ortólogos de Arabidopsis CDF1-5, y han sido nombrados como Solanum lycopersicum CDFs o SlCDFs. Los SlCDF1-5 son proteínas nucleares que muestran una unión específica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activación transcripcional in vivo. Análisis de expresión de los genes SlCDF1-5 muestran diferentes patrones de expresión durante el día y son inducidos de forma diferente en respuesta a estrés osmótico, salino, y de altas y bajas temperaturas. Plantas de Arabidopsis que sobre-expresan SlCDF1 y SlCDF3 muestran un incremento de la tolerancia a la sequía y salinidad. Además, de la expresión de varios genes de respuesta estrés como AtCOR15, AtRD29A y AtERD10, son expresados de forma diferente en estas líneas. La sobre-expresión de SlCDF3 en Arabidopsis promueve un retardo en el tiempo de floración a través de la modulación de la expresión de genes que controlan la floración como CONSTANS (CO) y FLOWERING LOCUS T (FT). En general, nuestros datos demuestran que los SlCDFs están asociados a funciones aun no descritas, relacionadas con la tolerancia a estrés abiótico y el control del tiempo de floración a través de la regulación de genes específicos y a un aumento de metabolitos particulares. ABSTRACT Tomato (Solanum lycopersicum L.) is one of the horticultural crops of major economic importance in the Spanish territory. However, its production is being affected by adverse environmental conditions such as salinity, drought and extreme temperatures. To resolve the problems triggered by stress conditions, a number of agricultural techniques that reduce the negative effects of stress are being frequently applied. However, the development of stress tolerant varieties is of a great interest. In this direction, the technological progress in obtaining and analysis of transgenic plants facilitated the study and evaluation of selected genes in relation to stress tolerance. Recent studies have shown that a use of regulatory genes such as transcription factors (TFs) is a great tool to obtain new tomato varieties with greater tolerance to abiotic stresses. The DOF (DNA binding with One Finger) proteins form a family of plant-specific TFs (Yangisawa, 2002) that are involved in the regulation of particular plant processes such as nitrogen assimilation, photosynthetic carbon fixation, seed germination, secondary metabolism and flowering time bur their precise roles in abiotic stress tolerance are largely unknown. The work described in this thesis aims at the study of the DOF type regulatory genes to increase tolerance to abiotic stress in both model species and the tomato. In the first chapter of this thesis, we present molecular characterization of the Arabidopsis CDF3 gene as well as its role in the response to abiotic stress and in other developmental processes. AtCDF3 is highly induced by drought, extreme temperatures, salt and abscisic acid (ABA) treatments. The cdf3-1 T-DNA insertion mutant was more sensitive to drought and low temperature stresses, whereas the AtCDF3 overexpression enhanced the tolerance of transgenic plants to drought, cold and osmotic stress comparing to the wild-type (WT) plants. In addition, these plants exhibit increased photosynthesis rates and stomatal aperture. AtCDF3 is localized in the nuclear region, displays specific binding to the canonical DNA target sequences and has a transcriptional activation activity in Arabidopsis protoplast assays. In addition, the C-terminal domain of AtCDF3 is essential for its localization and activation capabilities and the deletion of this domain significantly reduces the tolerance to drought in transgenic 35S::AtCDF3 overexpressing plants. Microarray analysis revealed that AtCDF3 regulated a set of genes involved in nitrogen and carbon metabolism. Our results demonstrate that AtCDF3 plays dual roles in regulating plant responses to drought and low temperature stress and in control of flowering time in vegetative tissues. In the second chapter this work, we carried out to identification of 34 tomato DOF genes that were classified by sequence similarity into four groups A-D, similar to the situation in Arabidopsis. In the D group we have identified five DOF genes that show similar characteristics to the Cycling Dof Factors (CDFs) of Arabidopsis. These genes were considered orthologous to the Arabidopsis CDF1 - 5 and were named Solanum lycopersicum CDFs or SlCDFs. SlCDF1-5 are nuclear proteins that display specific binding to canonical DNA target sequences and have transcriptional activation capacities in vivo. Expression analysis of SlCDF1-5 genes showed distinct diurnal expression patterns and were differentially induced in response to osmotic, salt and low and high temperature stresses. Arabidopsis plants overexpressing SlCDF1 and SlCDF3 showed increased drought and salt tolerance. In addition, various stress-responsive genes, such as AtCOR15, AtRD29A and AtERD10, were expressed differently in these lines. The overexpression of SlCDF3 in Arabidopsis also results in the late flowering phenotype through the modulation of the expression of flowering control genes such CONSTANS (CO) and FLOWERING LOCUS T (FT). Overall, our data connet SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Resumo:
Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.
Resumo:
Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a β–estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon β–estradiol treatment. As a proof of concept for the exploitation of this resource, β–estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl–root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
The European chestnut (Castanea sativa Mill.) is a multipurpose species that has been widely cultivated around the Mediterranean basin since ancient times. New varieties were brought to the Iberian Peninsula during the Roman Empire, which coexist since then with native populations that survived the last glaciation. The relevance of chestnut cultivation has being steadily growing since the Middle Ages, until the rural decline of the past century put a stop to this trend. Forest fires and diseases were also major factors. Chestnut cultivation is gaining momentum again due to its economic (wood, fruits) and ecologic relevance, and represents currently an important asset in many rural areas of Europe. In this Thesis we apply different molecular tools to help improve current management strategies. For this study we have chosen El Bierzo (Castile and Leon, NW Spain), which has a centenary tradition of chestnut cultivation and management, and also presents several unique features from a genetic perspective (next paragraph). Moreover, its nuts are widely appreciated in Spain and abroad for their organoleptic properties. We have focused our experimental work on two major problems faced by breeders and the industry: the lack of a fine-grained genetic characterization and the need for new strategies to control blight disease. To characterize with sufficient detail the genetic diversity and structure of El Bierzo orchards, we analyzed DNA from 169 trees grafted for nut production covering the entire region. We also analyzed 62 nuts from all traditional varieties. El Bierzo constitutes an outstanding scenario to study chestnut genetics and the influence of human management because: (i) it is located at one extreme of the distribution area; (ii) it is a major glacial refuge for the native species; (iii) it has a long tradition of human management (since Roman times, at least); and (iv) its geographical setting ensures an unusual degree of genetic isolation. Thirteen microsatellite markers provided enough informativeness and discrimination power to genotype at the individual level. Together with an unexpected level of genetic variability, we found evidence of genetic structure, with three major gene pools giving rise to the current population. High levels of genetic differentiation between groups supported this organization. Interestingly, genetic structure does not match with spatial boundaries, suggesting that the exchange of material and cultivation practices have strongly influenced natural gene flow. The microsatellite markers selected for this study were also used to classify a set of 62 samples belonging to all traditional varieties. We identified several cases of synonymies and homonymies, evidencing the need to substitute traditional classification systems with new tools for genetic profiling. Management and conservation strategies should also benefit from these tools. The avenue of high-throughput sequencing technologies, combined with the development of bioinformatics tools, have paved the way to study transcriptomes without the need for a reference genome. We took advantage of RNA sequencing and de novo assembly tools to determine the transcriptional landscape of chestnut in response to blight disease. In addition, we have selected a set of candidate genes with high potential for developing resistant varieties via genetic engineering. Our results evidenced a deep transcriptional reprogramming upon fungal infection. The plant hormones ET and JA appear to orchestrate the defensive response. Interestingly, our results also suggest a role for auxins in modulating such response. Many transcription factors were identified in this work that interact with promoters of genes involved in disease resistance. Among these genes, we have conducted a functional characterization of a two major thaumatin-like proteins (TLP) that belongs to the PR5 family. Two genes encoding chestnut cotyledon TLPs have been previously characterized, termed CsTL1 and CsTL2. We substantiate here their protective role against blight disease for the first time, including in silico, in vitro and in vivo evidence. The synergy between TLPs and other antifungal proteins, particularly endo-p-1,3-glucanases, bolsters their interest for future control strategies based on biotechnological approaches.
Resumo:
La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
This Master Final Project is intended to show the process developed to the functional and electrical characterization between different devices that use the SpaceWire space communications standard integrated into an evaluation board designed for this purpose. In order to carry out this characterization, firstly, a study to understand the SpaceWire standard is done. After that, another study for the understanding of the demonstration board with its different interfaces and IPs of SpW is done. According to this, it is expected to find out how the SpW devices are structured, especially at FPGA level, and how is the communication between them. Based on the knowledge obtained about SpaceWire and the SpW devices integrated into the evaluation board, the set of measurements and the strategy to validate electrical interoperability between the different devices are defined, as well as to perform functional checks required to ensure its proper understanding. Furthermore, it will let check whether the standard is met and search the limit of operation within a communication system representative of existing equipment in a satellite. Once finished the test plan and implemented on the representative hardware, the board will be considered characterized at SpW level and a report with the conclusions reached about the operation of the SpW interfaces in the board and constraints found will be done. RESUMEN. El presente Trabajo Fin de Máster pretende mostrar el proceso realizado para la caracterización eléctrica y funcional entre distintos dispositivos que utilizan el estándar de comunicaciones espaciales SpaceWire integrados en una tarjeta de evaluación diseñada para tal efecto. Para poder llevar a cabo dicha caracterización, en primer lugar, se realiza un estudio para el conocimiento del estándar SpaceWire. A continuación, se lleva a cabo otro estudio para el conocimiento de la tarjeta de demostración en la que se encuentran los distintos interfaces e IPs de SpW. Con esto último, se pretende conocer como están estructurados los dispositivos SpW, sobre todo a nivel de FPGA, y como se realiza la comunicación entre ellos. En base a los conocimientos adquiridos acerca de SpaceWire y los dispositivos SpW de la tarjeta de evaluación, se definen el conjunto de medidas y la estrategia a seguir para validar eléctricamente la interoperabilidad entre los distintos dispositivos, así como para realizar las comprobaciones funcionales necesarias para asegurar su correcto entendimiento. Además, con ello se podrá comprobar si se cumple el estándar y se podrá también buscar el límite de operación dentro de un sistema de comunicaciones representativo de los equipos existentes en un satélite. Realizado el plan de pruebas y aplicado sobre el hardware representativo se podrá dar por caracterizada la tarjeta a nivel SpW y realizar un informe con las conclusiones alcanzadas acerca del funcionamiento de los interfaces SpW de la tarjeta y las limitaciones encontradas.
Resumo:
Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.
Resumo:
The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ?traditional? set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified, easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.
Resumo:
Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.
Resumo:
Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.