12 resultados para flow regime
em Universidad Politécnica de Madrid
Resumo:
La gestión de los recursos hídricos se convierte en un reto del presente y del futuro frente a un panorama de continuo incremento de la demanda de agua debido al crecimiento de la población, el crecimiento del desarrollo económico y los posibles efectos del calentamiento global. La política hidráulica desde los años 60 en España se ha centrado en la construcción de infraestructuras que han producido graves alteraciones en el régimen natural de los ríos. Estas alteraciones han provocado y acrecentado los impactos sobre los ecosistemas fluviales y ribereños. Desde los años 90, sin embargo, ha aumentado el interés de la sociedad para conservar estos ecosistemas. El concepto de caudales ambientales consiste en un régimen de caudales que simula las características principales del régimen natural. Los caudales ambientales están diseñados para conservar la estructura y funcionalidad de los ecosistemas asociados al régimen fluvial, bajo la hipótesis de que los elementos que conforman estos ecosistemas están profundamente adaptados al régimen natural de caudales, y que cualquier alteración del régimen natural puede provocar graves daños a todo el sistema. El método ELOHA (Ecological Limits of Hydrological Alteration) tiene como finalidad identificar las componentes del régimen natural de caudales que son clave para mantener el equilibrio de los ecosistemas asociados, y estimar los límites máximos de alteración de estas componentes para garantizar su buen estado. Esta tesis presenta la aplicación del método ELOHA en la cuenca del Ebro. La cuenca del Ebro está profundamente regulada e intervenida por el hombre, y sólo las cabeceras de los principales afluentes del Ebro gozan todavía de un régimen total o cuasi natural. La tesis se estructura en seis capítulos que desarrollan las diferentes partes del método. El primer capítulo explica cómo se originó el concepto “caudales ambientales” y en qué consiste el método ELOHA. El segundo capítulo describe el área de estudio. El tercer capítulo realiza una clasificación de los regímenes naturales de la cuenca (RNC) del Ebro, basada en series de datos de caudal mínimamente alterado y usando exclusivamente parámetros hidrológicos. Se identificaron seis tipos diferentes de régimen natural: pluvial mediterráneo, nivo-pluvial, pluvial mediterréaneo con una fuerte componente del caudal base, pluvial oceánico, pluvio-nival oceánico y Mediterráneo. En el cuarto capítulo se realiza una regionalización a toda la cuenca del Ebro de los seis RNC encontrados en la cueca. Mediante parámetros climáticos y fisiográficos se extrapola la información del tipo de RNC a puntos donde no existen datos de caudal inalterado. El patrón geográfico de los tipos de régimen fluvial obtenido con la regionalización resultó ser coincidente con el patrón obtenido a través de la clasificación hidrológica. El quinto capítulo presenta la validación biológica de los procesos de clasificación anteriores: clasificación hidrológica y regionalización. La validación biológica de los tipos de regímenes fluviales es imprescindible, puesto que los diferentes tipos de régimen fluvial van a servir de unidades de gestión para favorecer el mantenimiento de los ecosistemas fluviales. Se encontraron diferencias significativas entre comunidades biológicas en cinco de los seis tipos de RNC encontrados en la cuenca. Finalmente, en el sexto capítulo se estudian las relaciones hidro-ecológicas existentes en tres de los seis tipos de régimen fluvial encontrados en la cuenca del Ebro. Mediante la construcción de curvas hidro-ecológicas a lo largo de un gradiente de alteración hidrológica, se pueden sugerir los límites de alteración hidrológica (ELOHAs) para garantizar el buen estado ecológico en cada uno de los tipos fluviales estudiados. Se establecieron ELOHAs en tres de los seis tipos de RNC de la cuenca del Ebro Esta tesis, además, pone en evidencia la falta de datos biológicos asociados a registros de caudal. Para llevar a cabo la implantación de un régimen de caudales ambientales en la cuenca, la ubicación de los puntos de muestreo biológico cercanos a estaciones de aforo es imprescindible para poder extraer relaciones causa-efecto de la gestión hidrológica sobre los ecosistemas dependientes. ABSTRACT In view of a growing freshwater demand because of population raising, improvement of economies and the potential effects of climate change, water resources management has become a challenge for present and future societies. Water policies in Spain have been focused from the 60’s on constructing hydraulic infrastructures, in order to dampen flow variability and granting water availability along the year. Consequently, natural flow regimes have been deeply altered and so the depending habitats and its ecosystems. However, an increasing acknowledgment of societies for preserving healthy freshwater ecosystems started in the 90’s and agreed that to maintain healthy freshwater ecosystems, it was necessary to set environmental flow regimes based on the natural flow variability. The Natural Flow Regime paradigm (Richter et al. 1996, Poff et al. 1997) bases on the hypothesis that freshwater ecosystems are made up by elements adapted to natural flow conditions, and any change on these conditions can provoke deep impacts on the whole system. Environmental flow regime concept consists in designing a flow regime that emulates natural flow characteristics, so that ecosystem structure, functions and services are maintained. ELOHA framework (Ecological Limits of Hydrological Alteration) aims to identify key features of the natural flow regime (NFR) that are needed to maintain and preserve healthy freshwater and riparian ecosystems. Moreover, ELOHA framework aims to quantify thresholds of alteration of these flow features according to ecological impacts. This thesis describes the application of the ELOHA framework in the Ebro River Basin. The Ebro River basin is the second largest basin in Spain and it is highly regulated for human demands. Only the Ebro headwaters tributaries still have completely unimpaired flow regime. The thesis has six chapters and the process is described step by step. The first chapter makes an introduction to the origin of the environmental flow concept and the necessity to come up. The second chapter shows a description of the study area. The third chapter develops a classification of NFRs in the basin based on natural flow data and using exclusively hydrological parameters. Six NFRs were found in the basin: continental Mediterranean-pluvial, nivo-pluvial, continental Mediterranean pluvial (with groundwater-dominated flow pattern), pluvio-oceanic, pluvio-nival-oceanic and Mediterranean. The fourth chapter develops a regionalization of the six NFR types across the basin by using climatic and physiographic variables. The geographical pattern obtained from the regionalization process was consistent with the pattern obtained with the hydrologic classification. The fifth chapter performs a biological validation of both classifications, obtained from the hydrologic classification and the posterior extrapolation. When the aim of flow classification is managing water resources according to ecosystem requirements, a validation based on biological data is compulsory. We found significant differences in reference macroinvertebrate communities between five over the six NFR types identified in the Ebro River basin. Finally, in the sixth chapter we explored the existence of significant and explicative flow alteration-ecological response relationships (FA-E curves) within NFR types in the Ebro River basin. The aim of these curves is to find out thresholds of hydrological alteration (ELOHAs), in order to preserve healthy freshwater ecosystem. We set ELOHA values in three NFR types identified in the Ebro River basin. During the development of this thesis, an inadequate biological monitoring in the Ebro River basin was identified. The design and establishment of appropriate monitoring arrangements is a critical final step in the assessment and implementation of environmental flows. Cause-effect relationships between hydrology and macroinvertebrate community condition are the principal data that sustain FA-E curves. Therefore, both data sites must be closely located, so that the effects of external factors are minimized. The scarce hydro-biological pairs of data available in the basin prevented us to apply the ELOHA method at all NFR types.
Resumo:
We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible discontinuous Galerkin Navier?Stokes solver, provides very similar results to classical linear instability analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier?Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the linearised Navier?Stokes equations, and showing the potential of this type of analysis based on snapshots to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD technique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised and adjoint linearised Navier?Stokes equations advanced in time. Subsequently, these modes are used to provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and complex geometries, at an affordable computational cost. The information provided by the sensitivity study is used to modify the L-shaped geometry and control the most unstable 3D mode.
Resumo:
The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.
Resumo:
Programa informático desarrollado en plataforma EXCEL (VBA) y dirigido al diseño de Separadores de dos y tres fases, verticales y horizontales. El programa de ordenador o aplicación tiene la capacidad de determinar las propiedades físicas del fluido, utilizando diferentes correlaciones sobre la base del “Black Oil Model”, con dichas propiedades el Programa predice el tipo de flujo presente. Si el tipo de flujo es “Slug Flow” el programa determinara las dimensiones del “Slug catcher” necesario. Bajo las condiciones de funcionamiento existentes el programa diseñará el separador elegido: dos o tres fases, vertical u horizontal. Por último, la aplicación informática estimará el coste del equipo. Abstract Computer program developed in EXCEL (VBA) platform and aimed for the design of Two-Phase, Three-Phase, Vertical or Horizontal Separators. The computer Program or Application has the capability to determine the fluid physical properties utilizing different correlations on the basis of the Black Oil Model, with those Properties the Program will predict the Flow Regime present. If the flow regime is Slug Flow the program will determine the necessary slug catcher dimensions. Under certain operational conditions the program will design the selected: Two-Phase or Three-Phase, Vertical or Horizontal Separator. Finally the computer Application will estimate the cost of the equipment.
Linear global instability of non-orthogonal incompressible swept attachment-line boundary layer flow
Resumo:
Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation
Resumo:
Thermal smoothing in the plasma ablated from a laser target under weakly nonuniform irradiation is analyzed, assuming absorption at nc and a deflagration regime (conduction restricted to a thin quasisteady layer next to the target). Magnetic generation effects are included and found to be weak. Differences from results available in the literature are explained; the importance of the character of the underdense flow at uniform irradiation is emphasized.
Resumo:
In this work, the Reduced Navier Stokes (RNS) are numerically integrated, and used to calculate nonlinear finite amplitude streaks. These structures are interesting since they can have a stabilizing effect and delay the transition to the turbulent regime. RNS formulation is also used to compute the family of nonlinear intrinsic streaks that emerge from the leading edge in absence of any external perturbation. Finally, this formulation is generalized to include the possibility of having a curved bottom wall
Resumo:
Se cuantifican las descargas subterráneas de un acuífero a un río que lo atraviesa utilizando correlaciones estadísticas. El río Duero, España, incrementa su caudal base en varios m3/s, al atravesar unos afloramientos carbonatados mesozoicos en un pequeño tramo de su cabecera; esto es de especial importancia en época de estiaje, cuando la mayor parte del caudal base del río procede de manantiales que allí se sitúan. Dichos afloramientos corresponden a uno de los dos acuíferos calcáreos confinados, que se desarrollan en paralelo y están hidráulicamente desconectados por una capa impermeable, que forman el sistema acuífero de los manantiales de Gormaz. Este sistema se encuentra en estado de régimen natural y está apenas explotado. Se define el modelo conceptual de funcionamiento hidrogeológico, considerando el papel hidrogeológico de la falla de Gormaz, situada en la zona de descarga del sistema. Analizando información geológica antecedente y la geofísica exploratoria realizada, se obtuvo un mejor conocimiento de la geometría y los límites de los acuíferos, definiéndose un sistema acuífero con una zona de recarga en el sur, correspondiente a los afloramientos calcáreos, los cuales se confinan hacia el norte bajo el Terciario, hasta intersecar con la falla normal de Gormaz. El salto de falla genera una barrera para las formaciones permeables situadas al extremo norte (margen derecha del río Duero); a su vez, el plano de falla facilita el ascenso del agua subterránea del sistema acuífero en estudio y pone en conexión hidráulica los dos acuíferos. Se estimaron, además, los parámetros hidráulicos de los acuíferos en los alrededores de la falla. La buena correlación entre los niveles piezométricos y las descargas subterráneas al río Duero han permitido la reconstrucción del hidrograma de los manantiales de Gormaz en el periodo 1992-2006. Se calcula así que la contribución subterránea al río Duero es de 135.9 hm3/año, que supone el 18.9% de la aportación total del río. In a short stretch of its headwaters, the base flow of the River Duero increases by several m3/s as it traverses some Mesozoic carbonate outcrops. This is of special importance during the dry season, when the majority of the base flow of the river proceeds from springs in this reach. The outcrops correspond to one of two confined calcareous aquifers that developed in parallel but which are not hydraulically connected because of an impermeable layer. Together, they constitute the aquifer system of the Gormaz Springs. The system is still in its natural regime and is hardly exploited. This study defines the conceptual model of hydrogeological functioning, taking into consideration the role of the Gormaz Fault, which is situated in the discharge zone of the system. Analysis of both antecedent geological information and geophysical explorations has led to a better understanding of the geometry and boundaries of the aquifers, defining an aquifer system with a recharge zone in the south corresponding to in the calcareous outcrops. These calcareous outcrops are confined to the north below Tertiary formations, as far as their intersection with the normal fault of Gormaz. The throw of the fault forms the barrier of the permeable formations situated in the extreme north (right bank of the River Duero). In turn, the fault plane facilitates the upflow of groundwater from the aquifer system and creates hydraulic connection between the two aquifers. In addition, the study estimated the hydraulic parameters of the aquifer around the fault. The close correlation between piezometric levels and the groundwater discharges to the River Duero has enabled the reconstruction of the hydrogram of Gormaz springs over the period 1992-2006. By this means, it is calculated that the groundwater contribution to the River Duero is 135.9 hm3/year, or 18.9% of the total river inflow.
Resumo:
El principal objetivo de este trabajo es aportar conocimiento para contestar la pregunta: ¿hasta que punto los ensayos en túnel aerodinámico pueden contribuir a determinar las características que afectan la respuesta dinámica de los aerogeneradores operando en terreno complejo?. Esta pregunta no es nueva, de hecho, el debate en la comunidad científica comenzó en el primer tercio del siglo pasado y aún está intensamente vivo. El método generalmente aceptado para enfrentar el mencionado problema consiste en analizar un caso de estudio determinado en el cual se aplican tanto ensayos a escala real como análisis computacionales y ensayos en túnel aerodinámico. Esto no es ni fácil ni barato. Esta es la razón por la cual desde el experimento de Askervein en 1988, los modelizadores del flujo atmosférico tuvieron que esperar hasta 2007 a que el experimento de Bolund fuese puesto en marcha con un despliegue de medios técnicos equivalentes (teniendo en cuenta la evolución de las tecnologías de sensores y computación). El problema contempla tantos aspectos que ambas experiencias fueron restringidas a condiciones de atmósfera neutra con efectos de Coriolis despreciables con objeto de reducir la complejidad. Este es el contexto en el que se ha desarrollado la presente tesis doctoral. La topología del flujo sobre la isla de Bolund ha sido estudiada mediante la reproducción del experimento de Bolund en los túneles aerodinámicos A9 y ACLA16 del IDR. Dos modelos de la isla de Bolund fueron fabricados a dos escalas, 1:230 y 1:115. El flujo de entrada en el túnel aerodinámico simulando la capa límite sin perturbar correspondía a régimen de transición (transitionally rough regime) y fue usado como situación de referencia. El modelo a escala 1:230 fue ensayado en el túnel A9 para determinar la presión sobre su superficie. La distribución del coeficiente de presión sobre la isla proporcionó una visualización y estimación de una región de desprendimiento sobre el pequeño acantilado situado al frente de la misma. Las medidas de presión instantánea con suficiente grado de resolución temporal pusieron de manifiesto la no estacionariedad en la región de desprendimiento. El modelo a escala 1:115 fue ensayado utilizando hilo caliente de tres componentes y un sistema de velocimetría por imágenes de partículas de dos componentes. El flujo fue caracterizado por el ratio de aceleración, el incremento normalizado de energía cinética turbulenta y los ángulos de inclinación y desviación horizontal. Los resultados a lo largo de la dirección 270°y alturas de 2 m y 5 m presentaron una gran similitud con los resultados a escala real del experimento de Bolund. Los perfiles verticales en las localizaciones de las torres meteorológicas mostraron un acuerdo significativo con los resultados a escala real. El análisis de los esfuerzos de Reynolds y el análisis espectral en las localizaciones de los mástiles meteorológicos presentaron niveles de acuerdo variados en ciertas posiciones, mientras que en otras presentaron claras diferencias. El mapeo horizontal del flujo, para una dirección de viento de 270°, permitió caracterizar el comportamiento de la burbuja intermitente de recirculación sobre el pequeño acantilado existente al frente de la isla así como de la región de relajación y de la capa de cortadura en la región corriente abajo de Bolund. Se realizaron medidas de velocidad con alta resolución espacial en planos perpendiculares a la dirección del flujo sin perturbar. Estas medidas permitieron detectar y caracterizar una estructura de flujo similar a un torbellino longitudinal con regiones con altos gradientes de velocidad y alta intensidad de turbulencia. Esta estructura de flujo es, sin duda, un reto para los modelos computacionales y puede considerarse un factor de riesgo para la operación de los aerogeneradores. Se obtuvieron y analizaron distribuciones espaciales de los esfuerzos de Reynolds mediante 3CHW y PIV. Este tipo de parámetros no constituyen parte de los resultados habituales en los ensayos en túnel sobre topografías y son muy útiles para los modelizadores que utilizan simulación de grades torbellinos (LES). Se proporciona una interpretación de los resultados obtenidos en el túnel aerodinámico en términos de utilidad para los diseñadores de parques eólicos. La evolución y variación de los parámetros del flujo a lo largo de líneas, planos y superficies han permitido identificar como estas propiedades del flujo podrían afectar la localización de los aerogeneradores y a la clasificación de emplazamientos. Los resultados presentados sugieren, bajo ciertas condiciones, la robustez de los ensayos en túnel para estudiar la topología sobre terreno complejo y su comparabilidad con otras técnicas de simulación, especialmente considerando el nivel de acuerdo del conjunto de resultados presentados con los resultados a escala real. De forma adicional, algunos de los parámetros del flujo obtenidos de las medidas en túnel son difícilmente determinables en ensayos a escala real o por medios computacionales, considerado el estado del arte. Este trabajo fue realizado como parte de las actividades subvencionadas por la Comisión Europea como dentro del proyecto FP7-PEOPLE-ITN-2008WAUDIT (Wind Resource Assessment Audit and Standardization) dentro de la FP7 Marie-Curie Initial Training Network y por el Ministerio Español de Economía y Competitividad dentro del proyecto ENE2012-36473, TURCO (Determinación en túnel aerodinámico de la distribución espacial de parámetros estadísticos de la turbulencia atmosférica sobre topografías complejas) del Plan Nacional de Investigación (Subprograma de investigación fundamental no orientada 2012). El informe se ha organizado en siete capítulos y un conjunto de anexos. En el primer capítulo se introduce el problema. En el capítulo dos se describen los medios experimentales utilizados. Seguidamente, en el capítulo tres, se analizan en detalle las condiciones de referencia del principal túnel aerodinámico utilizado en esta investigación. En el capítulo tres se presentan resultados de ensayos de presión superficial sobre un modelo de la isla. Los principales resultados del experimento de Bolund se reproducen en el capítulo cinco. En el capítulo seis se identifican diferentes estructuras del flujo sobre la isla y, finalmente, en el capitulo siete, se recogen las conclusiones y una propuesta de lineas de trabajo futuras. ABSTRACT The main objective of this work is to contribute to answer the question: to which extend can the wind tunnel testing contribute to determine the flow characteristics that affect the dynamic response of wind turbines operating in highly complex terrains?. This question is not new, indeed, the debate in the scientific community was opened in the first third of the past century and it is still intensely alive. The accepted approach to face this problem consists in analysing a given case study where full-scale tests, computational modelling and wind tunnel testing are applied to the same topography. This is neither easy nor cheap. This is is the reason why since the Askervein experience in 1988, the atmospheric flow modellers community had to wait till 2007 when the Bolund experiment was setup with a deployment of technical means equivalent (considering the evolution of the sensor and computing techniques). The problem is so manifold that both experiences were restricted to neutral conditions without Coriolis effects in order to reduce the complexity. This is the framework in which this PhD has been carried out. The flow topology over the Bolund Island has been studied by replicating the Bolund experiment in the IDR A9 and ACLA16 wind tunnels. Two mock-ups of the Bolund island were manufactured at two scales of 1:230 and 1:115. The in-flow in the empty wind tunnel simulating the incoming atmospheric boundary layer was in the transitionally rough regime and used as a reference case. The 1:230 model was tested in the A9 wind tunnel to measure surface pressure. The mapping of the pressure coefficient across the island gave a visualisation and estimation of a detachment region on the top of the escarpment in front of the island. Time resolved instantaneous pressure measurements illustrated the non-steadiness in the detachment region. The 1:115 model was tested using 3C hot-wires(HW) and 2C Particle Image Velocimetry(PIV). Measurements at met masts M3, M6, M7 and M8 and along Line 270°were taken to replicate the result of the Bolund experiment. The flow was characterised by the speed-up ratio, normalised increment of the turbulent kinetic energy, inclination angle and turning angle. Results along line 270°at heights of 2 m and 5 m compared very well with the full-scale results of the Bolund experiment. Vertical profiles at the met masts showed a significant agreement with the full-scale results. The analysis of the Reynolds stresses and the spectral analysis at the met mast locations gave a varied level of agreement at some locations while clear mismatch at others. The horizontal mapping of the flow field, for a 270°wind direction, allowed to characterise the behaviour of the intermittent recirculation bubble on top of the front escarpment followed by a relaxation region and the presence of a shear layer in the lee side of the island. Further detailed velocity measurements were taken at cross-flow planes over the island to study the flow structures on the island. A longitudinal vortex-like structure with high mean velocity gradients and high turbulent kinetic energy was characterised on the escarpment and evolving downstream. This flow structure is a challenge to the numerical models while posing a threat to wind farm designers when siting wind turbines. Spatial distribution of Reynold stresses were presented from 3C HW and PIV measurements. These values are not common results from usual wind tunnel measurements and very useful for modellers using large eddy simulation (LES). An interpretation of the wind tunnel results in terms of usefulness to wind farm designers is given. Evolution and variation of the flow parameters along measurement lines, planes and surfaces indicated how the flow field could affect wind turbine siting. Different flow properties were presented so compare the level of agreement to full-scale results and how this affected when characterising the site wind classes. The results presented suggest, under certain conditions, the robustness of the wind tunnel testing for studying flow topology over complex terrain and its capability to compare to other modelling techniques especially from the level of agreement between the different data sets presented. Additionally, some flow parameters obtained from wind tunnel measurements would have been quite difficult to be measured at full-scale or by computational means considering the state of the art. This work was carried out as a part of the activities supported by the EC as part of the FP7- PEOPLE-ITN-2008 WAUDIT project (Wind Resource Assessment Audit and Standardization) within the FP7 Marie-Curie Initial Training Network and by the Spanish Ministerio de Economía y Competitividad, within the framework of the ENE2012-36473, TURCO project (Determination of the Spatial Distribution of Statistic Parameters of Flow Turbulence over Complex Topographies in Wind Tunnel) belonging to the Spanish National Program of Research (Subprograma de investigación fundamental no orientada 2012). The report is organised in seven chapters and a collection of annexes. In chapter one, the problem is introduced. In chapter two the experimental setup is described. Following, in chapter three, the inflow conditions of the main wind tunnel used in this piece of research are analysed in detail. In chapter three, preliminary pressure tests results on a model of the island are presented. The main results from the Bolund experiment are replicated in chapter five. In chapter six, an identification of specific flow strutures over the island is presented and, finally, in chapter seven, conclusions and lines for future works related to the presented one are included.
Resumo:
Direct numerical simulations are performed to analyze the three-dimensional instability of flows over three-dimensional cavities. The flow structures at different Reynolds numbers are investigated by using the spectral-element solver nek5000. As the Reynolds number increasing, the lateral wall effects become more important, the recirculation zone shrinks, the front vortex increases and the flow structure inside of the cavity becomes more complex. Results show that the flow bifurcates from a steady state to an oscillatory regime beyond a value of Reynolds number Re = 1100.