62 resultados para finite-difference (FD) methods
em Universidad Politécnica de Madrid
Resumo:
En entornos hostiles tales como aquellas instalaciones científicas donde la radiación ionizante es el principal peligro, el hecho de reducir las intervenciones humanas mediante el incremento de las operaciones robotizadas está siendo cada vez más de especial interés. CERN, la Organización Europea para la Investigación Nuclear, tiene alrededor de unos 50 km de superficie subterránea donde robots móviles controlador de forma remota podrían ayudar en su funcionamiento, por ejemplo, a la hora de llevar a cabo inspecciones remotas sobre radiación en los diferentes áreas destinados al efecto. No solo es preciso considerar que los robots deben ser capaces de recorrer largas distancias y operar durante largos periodos de tiempo, sino que deben saber desenvolverse en los correspondientes túneles subterráneos, tener en cuenta la presencia de campos electromagnéticos, radiación ionizante, etc. y finalmente, el hecho de que los robots no deben interrumpir el funcionamiento de los aceleradores. El hecho de disponer de un sistema de comunicaciones inalámbrico fiable y robusto es esencial para la correcta ejecución de las misiones que los robots deben afrontar y por supuesto, para evitar tales situaciones en las que es necesario la recuperación manual de los robots al agotarse su energía o al perder el enlace de comunicaciones. El objetivo de esta Tesis es proveer de las directrices y los medios necesarios para reducir el riesgo de fallo en la misión y maximizar las capacidades de los robots móviles inalámbricos los cuales disponen de almacenamiento finito de energía al trabajar en entornos peligrosos donde no se dispone de línea de vista directa. Para ello se proponen y muestran diferentes estrategias y métodos de comunicación inalámbrica. Teniendo esto en cuenta, se presentan a continuación los objetivos de investigación a seguir a lo largo de la Tesis: predecir la cobertura de comunicaciones antes y durante las misiones robotizadas; optimizar la capacidad de red inalámbrica de los robots móviles con respecto a su posición; y mejorar el rango operacional de esta clase de robots. Por su parte, las contribuciones a la Tesis se citan más abajo. El primer conjunto de contribuciones son métodos novedosos para predecir el consumo de energía y la autonomía en la comunicación antes y después de disponer de los robots en el entorno seleccionado. Esto es importante para proporcionar conciencia de la situación del robot y evitar fallos en la misión. El consumo de energía se predice usando una estrategia propuesta la cual usa modelos de consumo provenientes de diferentes componentes en un robot. La predicción para la cobertura de comunicaciones se desarrolla usando un nuevo filtro de RSS (Radio Signal Strength) y técnicas de estimación con la ayuda de Filtros de Kalman. El segundo conjunto de contribuciones son métodos para optimizar el rango de comunicaciones usando novedosas técnicas basadas en muestreo espacial que son robustas frente a ruidos de campos de detección y radio y que proporcionan redundancia. Se emplean métodos de diferencia central finitos para determinar los gradientes 2D RSS y se usa la movilidad del robot para optimizar el rango de comunicaciones y la capacidad de red. Este método también se valida con un caso de estudio centrado en la teleoperación háptica de robots móviles inalámbricos. La tercera contribución es un algoritmo robusto y estocástico descentralizado para la optimización de la posición al considerar múltiples robots autónomos usados principalmente para extender el rango de comunicaciones desde la estación de control al robot que está desarrollando la tarea. Todos los métodos y algoritmos propuestos se verifican y validan usando simulaciones y experimentos de campo con variedad de robots móviles disponibles en CERN. En resumen, esta Tesis ofrece métodos novedosos y demuestra su uso para: predecir RSS; optimizar la posición del robot; extender el rango de las comunicaciones inalámbricas; y mejorar las capacidades de red de los robots móviles inalámbricos para su uso en aplicaciones dentro de entornos peligrosos, que como ya se mencionó anteriormente, se destacan las instalaciones científicas con emisión de radiación ionizante. En otros términos, se ha desarrollado un conjunto de herramientas para mejorar, facilitar y hacer más seguras las misiones de los robots en entornos hostiles. Esta Tesis demuestra tanto en teoría como en práctica que los robots móviles pueden mejorar la calidad de las comunicaciones inalámbricas mediante la profundización en el estudio de su movilidad para optimizar dinámicamente sus posiciones y mantener conectividad incluso cuando no existe línea de vista. Los métodos desarrollados en la Tesis son especialmente adecuados para su fácil integración en robots móviles y pueden ser aplicados directamente en la capa de aplicación de la red inalámbrica. ABSTRACT In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy or when the robot loses its communication link. The goal of this thesis is to provide means to reduce risk of mission failure and maximise mission capabilities of wireless mobile robots with finite energy storage capacity working in a radiation environment with non-line-of-sight (NLOS) communications by employing enhanced wireless communication methods. Towards this goal, the following research objectives are addressed in this thesis: predict the communication range before and during robotic missions; optimise and enhance wireless communication qualities of mobile robots by using robot mobility and employing multi-robot network. This thesis provides introductory information on the infrastructures where mobile robots will need to operate, the tasks to be carried out by mobile robots and the problems encountered in these environments. The reporting of research work carried out to improve wireless communication comprises an introduction to the relevant radio signal propagation theory and technology followed by explanation of the research in the following stages: An analysis of the wireless communication requirements for mobile robot for different tasks in a selection of CERN facilities; predictions of energy and communication autonomies (in terms of distance and time) to reduce risk of energy and communication related failures during missions; autonomous navigation of a mobile robot to find zone(s) of maximum radio signal strength to improve communication coverage area; and autonomous navigation of one or more mobile robots acting as mobile wireless relay (repeater) points in order to provide a tethered wireless connection to a teleoperated mobile robot carrying out inspection or radiation monitoring activities in a challenging radio environment. The specific contributions of this thesis are outlined below. The first sets of contributions are novel methods for predicting the energy autonomy and communication range(s) before and after deployment of the mobile robots in the intended environments. This is important in order to provide situational awareness and avoid mission failures. The energy consumption is predicted by using power consumption models of different components in a mobile robot. This energy prediction model will pave the way for choosing energy-efficient wireless communication strategies. The communication range prediction is performed using radio signal propagation models and applies radio signal strength (RSS) filtering and estimation techniques with the help of Kalman filters and Gaussian process models. The second set of contributions are methods to optimise the wireless communication qualities by using novel spatial sampling based techniques that are robust to sensing and radio field noises and provide redundancy features. Central finite difference (CFD) methods are employed to determine the 2-D RSS gradients and use robot mobility to optimise the communication quality and the network throughput. This method is also validated with a case study application involving superior haptic teleoperation of wireless mobile robots where an operator from a remote location can smoothly navigate a mobile robot in an environment with low-wireless signals. The third contribution is a robust stochastic position optimisation algorithm for multiple autonomous relay robots which are used for wireless tethering of radio signals and thereby to enhance the wireless communication qualities. All the proposed methods and algorithms are verified and validated using simulations and field experiments with a variety of mobile robots available at CERN. In summary, this thesis offers novel methods and demonstrates their use to predict energy autonomy and wireless communication range, optimise robots position to improve communication quality and enhance communication range and wireless network qualities of mobile robots for use in applications in hostile environmental characteristics such as scientific facilities emitting ionising radiations. In simpler terms, a set of tools are developed in this thesis for improving, easing and making safer robotic missions in hostile environments. This thesis validates both in theory and experiments that mobile robots can improve wireless communication quality by exploiting robots mobility to dynamically optimise their positions and maintain connectivity even when the (radio signal) environment possess non-line-of-sight characteristics. The methods developed in this thesis are well-suited for easier integration in mobile robots and can be applied directly at the application layer of the wireless network. The results of the proposed methods have outperformed other comparable state-of-the-art methods.
Resumo:
En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.
Resumo:
With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.
Resumo:
A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.
Resumo:
This thesis aims to introduce some fundamental concepts underlying option valuation theory including implementation of computational tools. In many cases analytical solution for option pricing does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations and finite difference methods. First, an algorithm based on Hull and Wilmott is written for every method. Then these algorithms are improved in different ways. For the binomial tree both speed and memory usage is significantly improved by using only one vector instead of a whole price storing matrix. Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) which is capable of improving speed by a factor which equals the number of processors used. Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, obtained option values are compared to those obtained with popular finite difference methods, and it is discussed which of the algorithms is more appropriate for which purpose.
Resumo:
Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space
Resumo:
Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.
Resumo:
The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.
Resumo:
Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.
Resumo:
Ultrasonic sound velocity measurements with hand-held equipment remain due to their simplicity among the most used methods for non-destructive grading of sawn woods, yet a dedicated normalization effort with respect to strength classes for Spanish species is still required. As part of an ongoing project with the aim of definition of standard testing methods, the effect of the dimensions of commonly tested Scots pine (Pinus sylvestris L.) timbers and equipment testing frequency on ultrasonic velocity were investigated. A dedicated full-wave finite-difference time-domain software allowed simulation of pulse propagation through timbers of representative length and section combinations. Sound velocity measurements vL were performed along the grain with the indirect method at 22 kHz and 45 kHz for grids of measurement points at specific distances. For sample sections larger than the cross-sectional wavelength ?RT, the simulated sound velocity vL converges to vL = (CL/?)0.5. For smaller square sections the sound velocity drops down to vL = (EL/?)0.5, where CL, EL and ? are the stiffness, E-modul and density, respectively. The experiments confirm a linear regression between time of flight and measurement distance even at less than two wavelength menor que2?L distance, the fitted sound speed values increased by 15% between the two tested frequencies.
Resumo:
Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.
Resumo:
La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.