2 resultados para fear of crime
em Universidad Politécnica de Madrid
Resumo:
Cloud computing and, more particularly, private IaaS, is seen as a mature technol- ogy with a myriad solutions to choose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock- in. Several competing and incompatible interfaces and management styles have increased even more these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this Master Thesis I propose a management architecture that tries to solve these problems; it provides a generalized control mechanism for several cloud infrastructures, and an interface that can meet the requirements of the users. This management architecture is designed in a modular way, and using a generic infor- mation model. I have validated the approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack.
Resumo:
Recientemente, el paradigma de la computación en la nube ha recibido mucho interés por parte tanto de la industria como del mundo académico. Las infraestructuras cloud públicas están posibilitando nuevos modelos de negocio y ayudando a reducir costes. Sin embargo, una compañía podría desear ubicar sus datos y servicios en sus propias instalaciones, o tener que atenerse a leyes de protección de datos. Estas circunstancias hacen a las infraestructuras cloud privadas ciertamente deseables, ya sea para complementar a las públicas o para sustituirlas por completo. Por desgracia, las carencias en materia de estándares han impedido que las soluciones para la gestión de infraestructuras privadas se hayan desarrollado adecuadamente. Además, la multitud de opciones disponibles ha creado en los clientes el miedo a depender de una tecnología concreta (technology lock-in). Una de las causas de este problema es la falta de alineación entre la investigación académica y los productos comerciales, ya que aquella está centrada en el estudio de escenarios idealizados sin correspondencia con el mundo real, mientras que éstos consisten en soluciones desarrolladas sin tener en cuenta cómo van a encajar con los estándares más comunes o sin preocuparse de hacer públicos sus resultados. Con objeto de resolver este problema, propongo un sistema de gestión modular para infraestructuras cloud privadas enfocado en tratar con las aplicaciones en lugar de centrarse únicamente en los recursos hardware. Este sistema de gestión sigue el paradigma de la computación autónoma y está diseñado en torno a un modelo de información sencillo, desarrollado para ser compatible con los estándares más comunes. Este modelo divide el entorno en dos vistas, que sirven para separar aquello que debe preocupar a cada actor involucrado del resto de información, pero al mismo tiempo permitiendo relacionar el entorno físico con las máquinas virtuales que se despliegan encima de él. En dicho modelo, las aplicaciones cloud están divididas en tres tipos genéricos (Servicios, Trabajos de Big Data y Reservas de Instancias), para que así el sistema de gestión pueda sacar partido de las características propias de cada tipo. El modelo de información está complementado por un conjunto de acciones de gestión atómicas, reversibles e independientes, que determinan las operaciones que se pueden llevar a cabo sobre el entorno y que es usado para hacer posible la escalabilidad en el entorno. También describo un motor de gestión encargado de, a partir del estado del entorno y usando el ya mencionado conjunto de acciones, la colocación de recursos. Está dividido en dos niveles: la capa de Gestores de Aplicación, encargada de tratar sólo con las aplicaciones; y la capa del Gestor de Infraestructura, responsable de los recursos físicos. Dicho motor de gestión obedece un ciclo de vida con dos fases, para así modelar mejor el comportamiento de una infraestructura real. El problema de la colocación de recursos es atacado durante una de las fases (la de consolidación) por un resolutor de programación entera, y durante la otra (la online) por un heurístico hecho ex-profeso. Varias pruebas han demostrado que este acercamiento combinado es superior a otras estrategias. Para terminar, el sistema de gestión está acoplado a arquitecturas de monitorización y de actuadores. Aquella estando encargada de recolectar información del entorno, y ésta siendo modular en su diseño y capaz de conectarse con varias tecnologías y ofrecer varios modos de acceso. ABSTRACT The cloud computing paradigm has raised in popularity within the industry and the academia. Public cloud infrastructures are enabling new business models and helping to reduce costs. However, the desire to host company’s data and services on premises, and the need to abide to data protection laws, make private cloud infrastructures desirable, either to complement or even fully substitute public oferings. Unfortunately, a lack of standardization has precluded private infrastructure management solutions to be developed to a certain level, and a myriad of diferent options have induced the fear of lock-in in customers. One of the causes of this problem is the misalignment between academic research and industry ofering, with the former focusing in studying idealized scenarios dissimilar from real-world situations, and the latter developing solutions without taking care about how they f t with common standards, or even not disseminating their results. With the aim to solve this problem I propose a modular management system for private cloud infrastructures that is focused on the applications instead of just the hardware resources. This management system follows the autonomic system paradigm, and is designed around a simple information model developed to be compatible with common standards. This model splits the environment in two views that serve to separate the concerns of the stakeholders while at the same time enabling the traceability between the physical environment and the virtual machines deployed onto it. In it, cloud applications are classifed in three broad types (Services, Big Data Jobs and Instance Reservations), in order for the management system to take advantage of each type’s features. The information model is paired with a set of atomic, reversible and independent management actions which determine the operations that can be performed over the environment and is used to realize the cloud environment’s scalability. From the environment’s state and using the aforementioned set of actions, I also describe a management engine tasked with the resource placement. It is divided in two tiers: the Application Managers layer, concerned just with applications; and the Infrastructure Manager layer, responsible of the actual physical resources. This management engine follows a lifecycle with two phases, to better model the behavior of a real infrastructure. The placement problem is tackled during one phase (consolidation) by using an integer programming solver, and during the other (online) with a custom heuristic. Tests have demonstrated that this combined approach is superior to other strategies. Finally, the management system is paired with monitoring and actuators architectures. The former able to collect the necessary information from the environment, and the later modular in design and capable of interfacing with several technologies and ofering several access interfaces.