13 resultados para fashionable sun-safe garments
em Universidad Politécnica de Madrid
Resumo:
This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without the need for infrastructure modifications. To do this, the system needs the position, speeds, and turning intentions of the rest of the cars involved in the manoeuvre. This information is acquired via communications, but other methods are also viable, such as artificial vision. The idea of the experiments was to adjust the speed of the manually driven vehicles to force a situation where all three vehicles arrive at an intersection at the same time.
Resumo:
Abstract is not available.
Resumo:
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable real-time kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
Resumo:
The road to the automation of the agricultural processes passes through the safe operation of the autonomous vehicles. This requirement is a fact in ground mobile units, but it still has not well defined for the aerial robots (UAVs) mainly because the normative and legislation are quite diffuse or even inexistent. Therefore, to define a common and global policy is the challenge to tackle. This characterization has to be addressed from the field experience. Accordingly, this paper presents the work done in this direction, based on the analysis of the most common sources of hazards when using UAV's for agricultural tasks. The work, based on the ISO 31000 normative, has been carried out by applying a three-step structure that integrates the identification, assessment and reduction procedures. The present paper exposes how this method has been applied to analyze previous accidents and malfunctions during UAV operations in order to obtain real failure causes. It has allowed highlighting common risks and hazardous sources and proposing specific guards and safety measures for the agricultural context.
Resumo:
Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper outlines the author’s approach to confront these issues. Next, a method is introduced to estimate the acceptance angle losses due to the tracker’s structural flexure, which in last instance relies in the computation of the minimum enclosing circle of a set of points in the plane. This method is also useful to simulate the drifts in the tracker’s pointing vector due to structural deformation as a function of the aperture orientation angle. Results of this method when applied to the design of a two axis CPV pedestal tracker are presented.
Resumo:
The present text intends to analyze the hypothesis stating that the path of the sun can be an organizing element for how you live in the houses designed by Jørn Utzon. To do so, I have selected twenty houses and building complexes designed by him between the years 1950-94, in Denmark, Sweden, The United Kingdom and Spain. In these projects I will look for elements which are repeated and their possible meaning. The aim is to reach practical conclusions that could help us decide how to orientate a house.
Resumo:
After a short personal view of the first years of the photonics in Spain, some references about its present situation are given. As a possible future, the first steps towards a Photonics based on the study of the employed mechanisms in the visual system of the living beings are presented.
Resumo:
Análisis de los principales factores de cambio que previsiblemente incidirán en los destinos turísticos de sol y playa en un escenario de bajo crecimiento.
Resumo:
The aim of the present study was to examine the influence of a program of moderate physical exercise throughout pregnancy on maternal and fetal parameters.
Resumo:
Se intenta en este texto establecer un paralelismo entre el instrumento musical y el espacio arquitectónico. El instrumento musical mediante el aire produce el regalo de la música. El espacio arquitectónico mediante la luz produce ese algo inefable que es la arquitectura.
Resumo:
Planteamiento de un Nuevo enfoque metodológico para incorporar la prospectiva en la planificación de destinos turísticos de sol y playa.
Resumo:
Reseña bibliográfica de Architecture of the Sun: Los Angeles Modernism 1900-1970
Resumo:
In this work, a new law for magnetic control of satellites in near-polar orbits is presented. This law has been developed for the UMPSat-2 microsatellite, which has been designed and manufactured by Universidad Politécnica de Madrid, Madrid. The control law is a modification of the B-dot strategy that enables the satellite to control the rotation rate. Besides, the satellite?s equilibrium state is characterized by having the rotation axis perpendicular to the orbit?s plane. The control law described in the present work only needs magnetometers and magnetorquers, as sensors and actuators, respectively, to carry out a successful attitude control on the spacecraft. A description of the analysis is included. Performance and applicability of the proposed method have been demonstrated by control dynamics together with Monte Carlo techniques and by implementing the control law in the UPMSat-2 mission simulator. Results show good performance in terms of acquisition and stability of the satellite rotation rate and orientation with respect to its orbit?s plane.