3 resultados para families
em Universidad Politécnica de Madrid
Resumo:
Protein-coding gene families are sets of similar genes with a shared evolutionary origin and, generally, with similar biological functions. In plants, the size and role of gene families has been only partially addressed. However, suitable bioinformatics tools are being developed to cluster the enormous number of sequences currently available in databases. Specifically, comparative genomic databases promise to become powerful tools for gene family annotation in plant clades. In this review, I evaluate the data retrieved from various gene family databases, the ease with which they can be extracted and how useful the extracted information is.
Resumo:
Experimental software engineering includes several processes, the most representative being run experiments, run replications and synthesize the results of multiple replications. Of these processes, only the first is relatively well established in software engineering. Problems of information management and communication among researchers are one of the obstacles to progress in the replication and synthesis processes. Software engineering experimentation has expanded considerably over the last few years. This has brought with it the invention of experimental process support proposals. However, few of these proposals provide integral support, including replication and synthesis processes. Most of the proposals focus on experiment execution. This paper proposes an infrastructure providing integral support for the experimental research process, specializing in the replication and synthesis of a family of experiments. The research has been divided into stages or phases, whose transition milestones are marked by the attainment of their goals. Each goal exactly matches an artifact or product. Within each stage, we will adopt cycles of successive approximations (generateand- test cycles), where each approximation includes a diferent viewpoint or input. Each cycle will end with the product approval.
Resumo:
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.