4 resultados para false rejection

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo techniques, which require the generation of samples from some target density, are often the only alternative for performing Bayesian inference. Two classic sampling techniques to draw independent samples are the ratio of uniforms (RoU) and rejection sampling (RS). An efficient sampling algorithm is proposed combining the RoU and polar RS (i.e. RS inside a sector of a circle using polar coordinates). Its efficiency is shown in drawing samples from truncated Cauchy and Gaussian random variables, which have many important applications in signal processing and communications. RESUMEN. Método eficiente para generar algunas variables aleatorias de uso común en procesado de señal y comunicaciones (por ejemplo, Gaussianas o Cauchy truncadas) mediante la combinación de dos técnicas: "ratio of uniforms" y "rejection sampling".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores one aspect of the processing perspective in L2 learning in an EST context: the processing of new content words, in English, of the type ‘cognates’ and ‘false friends’, by Spanish speaking engineering students. The paper does not try to offer a comprehensive overview of language acquisition mechanisms, but rather it is intended to review more narrowly how our conceptual systems, governed by intricately linked networks of neural connections in the brain, make language development possible, creating, at the same time, some L2 processing problems. The case of ‘cognates and false friends’ in specialised contexts is brought here to illustrate some of the processing problems that the L2 learner has to confront, and how mappings in the visual, phonological and semantic (conceptual) brain structures function in second language processing of new vocabulary. Resumen Este artículo pretende reflexionar sobre un aspecto de la perspectiva del procesamiento de segundas lenguas (L2) en el contexto del ICT: el procesamiento de palabras nuevas, en inglés, conocidas como “cognados” y “falsos amigos”, por parte de estudiantes de ingeniería españoles. No se pretende ofrecer una visión completa de los mecanismos de adquisición del lenguaje, más bien se intenta mostrar cómo nuestro sistema conceptual, gobernado por una complicada red de conexiones neuronales en el cerebro, hace posible el desarrollo del lenguaje, aunque ello conlleve ciertas dificultades en el procesamiento de segundas lenguas. El caso de los “cognados” y los “falsos amigos”, en los lenguajes de especialidad, se trae para ilustrar algunos de los problemas de procesamiento que el estudiante de una lengua extranjera tiene que afrontar y el funcionamiento de las correspondencias entre las estructuras visuales, fonológicas y semánticas (conceptuales) del cerebro en el procesamiento de nuevo vocabulario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Rejection Metropolis Sampling (ARMS) is a wellknown MCMC scheme for generating samples from onedimensional target distributions. ARMS is widely used within Gibbs sampling, where automatic and fast samplers are often needed to draw from univariate full-conditional densities. In this work, we propose an alternative adaptive algorithm (IA2RMS) that overcomes the main drawback of ARMS (an uncomplete adaptation of the proposal in some cases), speeding up the convergence of the chain to the target. Numerical results show that IA2RMS outperforms the standard ARMS, providing a correlation among samples close to zero.