9 resultados para exploratory spatial data analysis

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los modelos de desarrollo regional, rural y urbano arrancaron en la década de los 90 en Estados Unidos, modelando los factores relacionados con la economía que suministran información y conocimiento acerca de cómo los parámetros geográficos y otros externos influencian la economía regional. El desarrollo regional y en particular el rural han seguido diferentes caminos en Europa y España, adoptando como modelo los programas estructurales de la UE ligados a la PAC. El Programa para el Desarrollo Rural Sostenible, recientemente lanzado por el Gobierno de España (2010) no profundiza en los modelos económicos de esta economía y sus causas. Este estudio pretende encontrar pautas de comportamiento de las variables de la economía regional-rural, y como el efecto de distribución geográfica de la población condiciona la actividad económica. Para este propósito, y utilizando datos espaciales y económicos de las regiones, se implementaran modelos espaciales que permitan evaluar el comportamiento económico, y verificar hipótesis de trabajo sobre la geografía y la economía del territorio. Se utilizarán modelos de análisis espacial como el análisis exploratorio espacial y los modelos econométricos de ecuaciones simultáneas, y dentro de estas los modelos ampliamente utilizados en estudios regionales de Carlino-Mills- Boarnet. ABSTRACT The regional development models for rural and urban areas started in USA in the ´90s, modeling the economy and the factors involved to understand and collect the knowledge of how the external parameters influenced the regional economy. Regional development and in particular rural development has followed different paths in Europe and Spain, adopting structural programs defined in the EU Agriculture Common Policy. The program for Sustainable Rural Development recently implemented in Spain (2010) is short sighted considering the effects of the regional economy. This study endeavors to underline models of behavior for the rural and regional economy variables, and how the regional distribution of population conditions the economic activities. For that purpose using current spatial regional economic data, this study will implement spatial economic models to evaluate the behavior of the regional economy, including the evaluation of working hypothesis about geography and economy in the territory. The approach will use data analysis models, like exploratory spatial data analysis, and spatial econometric models, and in particular for its wide acceptance in regional analysis, the Carlino-Mills-Boarnet equations model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents: - Center for Open Middleware - POSDATA project - User modeling - Some early results - @posdata service

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años la sociedad está experimentando una serie de cambios. Uno de estos cambios es la datificación (“datafication” en inglés). Este término puede ser definido como la transformación sistemática de aspectos de la vida cotidiana de las personas en datos procesados por ordenadores. Cada día, a cada minuto y a cada segundo, cada vez que alguien emplea un dispositivo digital,hay datos siendo guardados en algún lugar. Se puede tratar del contenido de un correo electrónico pero también puede ser el número de pasos que esa persona ha caminado o su historial médico. El simple almacenamiento de datos no proporciona un valor añadido por si solo. Para extraer conocimiento de los datos, y por tanto darles un valor, se requiere del análisis de datos. La ciencia de los datos junto con el análisis de datos se está volviendo cada vez más popular. Hoy en día, se pueden encontrar millones de web APIs estadísticas; estas APIs ofrecen la posibilidad de analizar tendencias o sentimientos presentes en las redes sociales o en internet en general. Una de las redes sociales más populares, Twitter, es pública. Cada mensaje, o tweet, publicado puede ser visto por cualquier persona en el mundo, siempre y cuando posea una conexión a internet. Esto hace de Twitter un medio interesante a la hora de analizar hábitos sociales o perfiles de consumo. Es en este contexto en que se engloba este proyecto. Este trabajo, combinando el análisis estadístico de datos y el análisis de contenido, trata de extraer conocimiento de tweets públicos de Twitter. En particular tratará de establecer si el género es un factor influyente en las relaciones entre usuarios de Twitter. Para ello, se analizará una base de datos que contiene casi 2.000 tweets. En primer lugar se determinará el género de los usuarios mediante web APIs. En segundo lugar se empleará el contraste de hipótesis para saber si el género influye en los usuarios a la hora de relacionarse con otros usuarios. Finalmente se construirá un modelo estadístico para predecir el comportamiento de los usuarios de Twitter en relación a su género.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In coffee processing the fermentation stage is considered one of the critical operations by its impact on the final quality of the product. However, the level of control of the fermentation process on each farm is often not adequate; the use of sensorics for controlling coffee fermentation is not common. The objective of this work is to characterize the fermentation temperature in a fermentation tank by applying spatial interpolation and a new methodology of data analysis based on phase space diagrams of temperature data, collected by means of multi-distributed, low cost and autonomous wireless sensors. A real coffee fermentation was supervised in the Cauca region (Colombia) with a network of 24 semi-passive TurboTag RFID temperature loggers with vacuum plastic cover, submerged directly in the fermenting mass. Temporal evolution and spatial distribution of temperature is described in terms of the phase diagram areas which characterizes the cyclic behaviour of temperature and highlights the significant heterogeneity of thermal conditions at different locations in the tank where the average temperature of the fermentation was 21.2 °C, although there were temperature ranges of 4.6°C, and average spatial standard deviation of ±1.21ºC. In the upper part of the tank we found high heterogeneity of temperatures, the higher temperatures and therefore the higher fermentation rates. While at the bottom, it has been computed an area in the phase diagram practically half of the area occupied by the sensors of the upper tank, therefore this location showed higher temperature homogeneity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo, «Una aproximación a Ia integración en Open Data de los recursos Inspire de Ia IDEE », tiene por objetivo el construir un puente entre las Infraestructuras de Datos Espaciales (IDE) y el mundo de los «datos abiertos » aprovechando el marco legal de la Reutilización de la Información del Sector Público (RISP). Tras analizar qué es RISP y en particular los datos abiertos, y cómo se implementa en distintas Administraciones, se estudian los requisitos técnicos y legales necesarios para construir el «traductor» que permita canalizar la información IDE en el portal central de reutilización de información español datos.gob.es, dando una mayor visibilidad a los recursos INSPIRE. El trabajo se centra específicamente en dos puntos: en primer lugar en proporcionar y documentar la solución técnica que sirva en primera instancia para que el Instituto Geográfico Nacional aporte con más eficiencia sus recursos a datos.gob.es. En segundo lugar, a estudiar la aplicabilidad de esta misma solución al ámbito de la IDE de España (IDEE), señalando problemas detectados en el análisis de su contenido y sugiriendo recomendaciones para minimizar los problemas de su potencial reutilización. ABSTRACT: This work titled «Analysis of the integration of INSPIRE resources coming from Spanish Spatial Data Infrastructure within the National Public Sector Information portal», aims to build a bridge between the Spatial Data Infrastructures (SDI ) and the world of "Open Data" taking advantage of the legal framework on the Re-use of Public Sector Information (PSI) . After analyzing what PSI reuse and Open Data is and how it is implemented by different administrations, a study to extract the technical and legal requirements is done to build the "translator" that will allow adding SDI resources within the Spanish portal for the PSI reuse data .gob.es while giving greater visibility to INSPIRE. This document specifically focuses on two aspects: first to provide and document the technical solution that serves primarily for the National Geographic Institute to supply more efficiently its resources to datos.gob.es. Secondly, to study the applicability of the proposed solution to the whole Spanish SDI (IDEE), noting identified problems and suggesting recommendations to minimize problems of its potential reuse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.