5 resultados para event related potentials

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as “beautiful” and “not beautiful.” TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as “beautiful” than those regarded as “not beautiful” in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50–100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During sentence processing there is a preference to treat the first noun phrase found as the subject and agent, unless marked the other way. This preference would lead to a conflict in thematic role assignment when the syntactic structure conforms to a non-canonical object-before-subject pattern. Left perisylvian and fronto-parietal brain networks have been found to be engaged by increased computational demands during sentence comprehension, while event-reated brain potentials have been used to study the on-line manifestation of these demands. However, evidence regarding the spatiotemporal organization of brain networks in this domain is scarce. In the current study we used Magnetoencephalography to track spatio-temporally brain activity while Spanish speakers were reading subject- and object-first cleft sentences. Both kinds of sentences remained ambiguous between a subject-first or an object-first interpretation up to the appearance of the second argument. Results show the time-modulation of a frontal network at the disambiguation point of object-first sentences. Moreover, the time windows where these effects took place have been previously related to thematic role integration (300–500 ms) and to sentence reanalysis and resolution of conflicts during processing (beyond 500 ms post-stimulus). These results point to frontal cognitive control as a putative key mechanism which may operate when a revision of the sentence structure and meaning is necessary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach to compare two types of data, subjective data (Polarity of Pan American Games 2011 event by country) and objective data (the number of medals won by each participating country), based on the Pearson corre- lation. When dealing with events described by people, knowledge acquisition is difficult because their structure is heterogeneous and subjective. A first step towards knowing the polarity of the information provided by people consists in automatically classifying the posts into clusters according to their polarity. The authors carried out a set of experiments using a corpus that consists of 5600 posts extracted from 168 Internet resources related to a specific event: the 2011 Pan American games. The approach is based on four components: a crawler, a filter, a synthesizer and a polarity analyzer. The PanAmerican approach automatically classifies the polarity of the event into clusters with the following results: 588 positive, 336 neutral, and 76 negative. Our work found out that the polarity of the content produced was strongly influenced by the results of the event with a correlation of .74. Thus, it is possible to conclude that the polarity of content is strongly affected by the results of the event. Finally, the accuracy of the PanAmerican approach is: .87, .90, and .80 according to the precision of the three classes of polarity evaluated.