2 resultados para espalhamento múltiplo

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis plantea una metodología de análisis estadístico de roturas de tubería en redes de distribución de agua, que analiza la relación entre las roturas y la presión de agua y que propone la implantación de una gestión de presiones que reduzca el número de roturas que se producen en dichas redes. Las redes de distribución de agua se deterioran y una de sus graves consecuencias es la aparición de roturas frecuentes en sus tuberías. Las roturas llevan asociados elevados costes sociales, económicos y medioambientales y es por ello por lo que las compañías gestoras del agua tratan de reducirlas en la medida de lo posible. Las redes de distribución de agua se pueden dividir en zonas o sectores que facilitan su control y que pueden ser independientes o aislarse mediante válvulas, como ocurre en las redes de países más desarrollados, o pueden estar intercomunicados hidráulicamente. La implantación de una gestión de presiones suele llevarse a cabo a través de las válvulas reductoras de presión (VPR), que se instalan en las cabeceras de estos sectores y que controlan la presión aguas abajo de la misma, aunque varíe su caudal de entrada. Los métodos más conocidos de la gestión de presiones son la reducción de presiones, que es el control más habitual, el mantenimiento de la presión, la prevención y/o alivio de los aumentos repentinos de presión y el establecimiento de un control por alturas. A partir del año 2005 se empezó a reconocer el efecto de la gestión de presiones sobre la disminución de las roturas. En esta Tesis, se sugiere una gestión de presiones que controle los rangos de los indicadores de la presión de cabecera que más influyan en la probabilidad de roturas de tubería. Así, la presión del agua se caracteriza a través de indicadores obtenidos de la presión registrada en la cabecera de los sectores, debido a que se asume que esta presión es representativa de la presión de operación de todas las tuberías porque las pérdidas de carga son relativamente bajas y las diferencias topográficas se tienen en cuenta en el diseño de los sectores. Y los indicadores de presión, que se pueden definir como el estadístico calculado a partir de las series de la presión de cabecera sobre una ventana de tiempo, pueden proveer la información necesaria para ayudar a la toma de decisiones a los gestores del agua con el fin de reducir las roturas de tubería en las redes de distribución de agua. La primera parte de la metodología que se propone en esta Tesis trata de encontrar los indicadores de presión que influyen más en la probabilidad de roturas de tuberías. Para conocer si un indicador es influyente en la probabilidad de las roturas se comparan las estimaciones de las funciones de distribución acumulada (FDAs) de los indicadores de presiones, considerando dos situaciones: cuando se condicionan a la ocurrencia de una rotura (suceso raro) y cuando se calculan en la situación normal de operación (normal operación). Por lo general, las compañías gestoras cuentan con registros de roturas de los años más recientes y al encontrarse las tuberías enterradas se complica el acceso a la información. Por ello, se propone el uso de funciones de probabilidad que permiten reducir la incertidumbre asociada a los datos registrados. De esta forma, se determinan las funciones de distribución acumuladas (FDAs) de los valores del indicador de la serie de presión (situación normal de operación) y las FDAs de los valores del indicador en el momento de ocurrencia de las roturas (condicionado a las roturas). Si las funciones de distribución provienen de la misma población, no se puede deducir que el indicador claramente influya en la probabilidad de roturas. Sin embargo, si se prueba estadísticamente que las funciones proceden de la misma población, se puede concluir que existe una relación entre el indicador analizado y la ocurrencia de las roturas. Debido a que el número de valores del indicador de la FDA condicionada a las roturas es mucho menor que el número de valores del indicador de la FDA incondicional a las roturas, se generan series aleatorias a partir de los valores de los indicadores con el mismo número de valores que roturas registradas hay. De esta forma, se comparan las FDAs de series aleatorias del indicador con la FDA condicionada a las roturas del mismo indicador y se deduce si el indicador es influyente en la probabilidad de las roturas. Los indicadores de presión pueden depender de unos parámetros. A través de un análisis de sensibilidad y aplicando un test estadístico robusto se determina la situación en la que estos parámetros dan lugar a que el indicador sea más influyente en la probabilidad de las roturas. Al mismo tiempo, los indicadores se pueden calcular en función de dos parámetros de cálculo que se denominan el tiempo de anticipación y el ancho de ventana. El tiempo de anticipación es el tiempo (en horas) entre el final del periodo de computación del indicador de presión y la rotura, y el ancho de ventana es el número de valores de presión que se requieren para calcular el indicador de presión y que es múltiplo de 24 horas debido al comportamiento cíclico diario de la presión. Un análisis de sensibilidad de los parámetros de cálculo explica cuándo los indicadores de presión influyen más en la probabilidad de roturas. En la segunda parte de la metodología se presenta un modelo de diagnóstico bayesiano. Este tipo de modelo forma parte de los modelos estadísticos de prevención de roturas, parten de los datos registrados para establecer patrones de fallo y utilizan el teorema de Bayes para determinar la probabilidad de fallo cuando se condiciona la red a unas determinadas características. Así, a través del teorema de Bayes se comparan la FDA genérica del indicador con la FDA condicionada a las roturas y se determina cuándo la probabilidad de roturas aumenta para ciertos rangos del indicador que se ha inferido como influyente en las roturas. Se determina un ratio de probabilidad (RP) que cuando es superior a la unidad permite distinguir cuándo la probabilidad de roturas incrementa para determinados intervalos del indicador. La primera parte de la metodología se aplica a la red de distribución de la Comunidad de Madrid (España) y a la red de distribución de Ciudad de Panamá (Panamá). Tras el filtrado de datos se deduce que se puede aplicar la metodología en 15 sectores en la Comunidad de Madrid y en dos sectores, llamados corregimientos, en Ciudad de Panamá. Los resultados demuestran que en las dos redes los indicadores más influyentes en la probabilidad de las roturas son el rango de la presión, que supone la diferencia entre la presión máxima y la presión mínima, y la variabilidad de la presión, que considera la propiedad estadística de la desviación típica. Se trata, por tanto, de indicadores que hacen referencia a la dispersión de los datos, a la persistencia de la variación de la presión y que se puede asimilar en resistencia de materiales a la fatiga. La segunda parte de la metodología se ha aplicado a los indicadores influyentes en la probabilidad de las roturas de la Comunidad de Madrid y se ha deducido que la probabilidad de roturas aumenta para valores extremos del indicador del rango de la presión y del indicador de la variabilidad de la presión. Finalmente, se recomienda una gestión de presiones que limite los intervalos de los indicadores influyentes en la probabilidad de roturas que incrementen dicha probabilidad. La metodología propuesta puede aplicarse a otras redes de distribución y puede ayudar a las compañías gestoras a reducir el número de fallos en el sistema a través de la gestión de presiones. This Thesis presents a methodology for the statistical analysis of pipe breaks in water distribution networks. The methodology studies the relationship between pipe breaks and water pressure, and proposes a pressure management procedure to reduce the number of breaks that occur in such networks. One of the manifestations of the deterioration of water supply systems is frequent pipe breaks. System failures are one of the major challenges faced by water utilities, due to their associated social, economic and environmental costs. For all these reasons, water utilities aim at reducing the problem of break occurrence to as great an extent as possible. Water distribution networks can be divided into areas or sectors, which facilitates the control of the network. These areas may be independent or isolated by valves, as it usually happens in developing countries. Alternatively, they can be hydraulically interconnected. The implementation of pressure management strategies is usually carried out through pressure-reducing valves (PRV). These valves are installed at the head of the sectors and, although the inflow may vary significantly, they control the downstream pressure. The most popular methods of pressure management consist of pressure reduction, which is the common form of control, pressure sustaining, prevention and/or alleviation of pressure surges or large variations in pressure, and level/altitude control. From 2005 onwards, the effects of pressure management on burst frequencies have become more widely recognized in the technical literature. This thesis suggests a pressure management that controls the pressure indicator ranges most influential on the probability of pipe breaks. Operating pressure in a sector is characterized by means of a pressure indicator at the head of the DMA, as head losses are relatively small and topographical differences were accounted for at the design stage. The pressure indicator, which may be defined as the calculated statistic from the time series of pressure head over a specific time window, may provide necessary information to help water utilities to make decisions to reduce pipe breaks in water distribution networks. The first part of the methodology presented in this Thesis provides the pressure indicators which have the greatest impact on the probability of pipe breaks to be determined. In order to know whether a pressure indicator influences the probability of pipe breaks, the proposed methodology compares estimates of cumulative distribution functions (CDFs) of a pressure indicator through consideration of two situations: when they are conditioned to the occurrence of a pipe break (a rare event), and when they are not (a normal operation). Water utilities usually have a history of failures limited to recent periods of time, and it is difficult to have access to precise information in an underground network. Therefore, the use of distribution functions to address such imprecision of recorded data is proposed. Cumulative distribution functions (CDFs) derived from the time series of pressure indicators (normal operation) and CDFs of indicator values at times coincident with a reported pipe break (conditioned to breaks) are compared. If all estimated CDFs are drawn from the same population, there is no reason to infer that the studied indicator clearly influences the probability of the rare event. However, when it is statistically proven that the estimated CDFs do not come from the same population, the analysed indicator may have an influence on the occurrence of pipe breaks. Due to the fact that the number of indicator values used to estimate the CDF conditioned to breaks is much lower in comparison with the number of indicator values to estimate the CDF of the unconditional pressure series, and that the obtained results depend on the size of the compared samples, CDFs from random sets of the same size sampled from the unconditional indicator values are estimated. Therefore, the comparison between the estimated CDFs of random sets of the indicator and the estimated CDF conditioned to breaks allows knowledge of if the indicator is influential on the probability of pipe breaks. Pressure indicators depend on various parameters. Sensitivity analysis and a robust statistical test allow determining the indicator for which these parameters result most influential on the probability of pipe breaks. At the same time, indicators can be calculated according to two model parameters, named as the anticipation time and the window width. The anticipation time refers to the time (hours) between the end of the period for the computation of the pressure indicator and the break. The window width is the number of instantaneous pressure values required to calculate the pressure indicator and is multiple of 24 hours, as water pressure has a cyclical behaviour which lasts one day. A sensitivity analysis of the model parameters explains when the pressure indicator is more influential on the probability of pipe breaks. The second part of the methodology presents a Bayesian diagnostic model. This kind of model belongs to the class of statistical predictive models, which are based on historical data, represent break behavior and patterns in water mains, and use the Bayes’ theorem to condition the probability of failure to specific system characteristics. The Bayes’ theorem allows comparing the break-conditioned FDA and the unconditional FDA of the indicators and determining when the probability of pipe breaks increases for certain pressure indicator ranges. A defined probability ratio provides a measure to establish whether the probability of breaks increases for certain ranges of the pressure indicator. The first part of the methodology is applied to the water distribution network of Madrid (Spain) and to the water distribution network of Panama City (Panama). The data filtering method suggests that the methodology can be applied to 15 sectors in Madrid and to two areas in Panama City. The results show that, in both systems, the most influential indicators on the probability of pipe breaks are the pressure range, which is the difference between the maximum pressure and the minimum pressure, and pressure variability, referred to the statistical property of the standard deviation. Therefore, they represent the dispersion of the data, the persistence of the variation in pressure and may be related to the fatigue in material resistance. The second part of the methodology has been applied to the influential indicators on the probability of pipe breaks in the water distribution network of Madrid. The main conclusion is that the probability of pipe breaks increases for the extreme values of the pressure range indicator and of the pressure variability indicator. Finally, a pressure management which limits the ranges of the pressure indicators influential on the probability of pipe breaks that increase such probability is recommended. The methodology presented here is general, may be applied to other water distribution networks, and could help water utilities reduce the number of system failures through pressure management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En 1966, D. B. Leeson publicó el artículo titulado “A simple model of feedback oscillator noise spectrum” en el que, mediante una ecuación obtenida de forma heurística y basada en parámetros conocidos de los osciladores, proponía un modelo para estimar el espectro de potencia que cuantifica el Ruido de Fase de estos osciladores. Este Ruido de Fase pone de manifiesto las fluctuaciones aleatorias que se producen en la fase de la señal de salida de cualquier oscilador de frecuencia f_0. Desde entonces, los adelantos tecnológicos han permitido grandes progresos en cuanto a la medida del Ruido de Fase, llegando a encontrar una estrecha “zona plana”, alrededor de f_0, conocida con el nombre de Ensanchamiento de Línea (EL) que Leeson no llegó a observar y que su modelo empírico no recogía. Paralelamente han ido surgiendo teorías que han tratado de explicar el Ruido de Fase con mayor o menor éxito. En esta Tesis se propone una nueva teoría para explicar el espectro de potencia del Ruido de Fase de un oscilador realimentado y basado en resonador L-C (Inductancia-Capacidad). Al igual que otras teorías, la nuestra también relaciona el Ruido de Fase del oscilador con el ruido térmico del circuito que lo implementa pero, a diferencia de aquellas, nuestra teoría se basa en un Modelo Complejo de ruido eléctrico que considera tanto las Fluctuaciones de energía eléctrica asociadas a la susceptancia capacitiva del resonador como las Disipaciones de energía eléctrica asociadas a su inevitable conductancia G=1⁄R, que dan cuenta del contacto térmico entre el resonador y el entorno térmico que le rodea. En concreto, la nueva teoría que proponemos explica tanto la parte del espectro del Ruido de Fase centrada alrededor de la frecuencia portadora f_0 que hemos llamado EL y su posterior caída proporcional a 〖∆f〗^(-2) al alejarnos de f_0, como la zona plana o pedestal que aparece en el espectro de Ruido de Fase lejos de esa f_0. Además, al saber cuantificar el EL y su origen, podemos explicar con facilidad la aparición de zonas del espectro de Ruido de Fase con caída 〖∆f〗^(-3) cercanas a la portadora y que provienen del denominado “exceso de ruido 1⁄f” de dispositivos de Estado Sólido y del ruido “flicker” de espectro 1⁄f^β (0,8≤β≤1,2) que aparece en dispositivos de vacío como las válvulas termoiónicas. Habiendo mostrado que una parte del Ruido de Fase de osciladores L-C realimentados que hemos denominado Ruido de Fase Térmico, se debe al ruido eléctrico de origen térmico de la electrónica que forma ese oscilador, proponemos en esta Tesis una nueva fuente de Ruido de Fase que hemos llamado Ruido de Fase Técnico, que se añadirá al Térmico y que aparecerá cuando el desfase del lazo a la frecuencia de resonancia f_0 del resonador no sea 0° o múltiplo entero de 360° (Condición Barkhausen de Fase, CBF). En estos casos, la modulación aleatoria de ganancia de lazo que realiza el Control Automático de Amplitud en su lucha contra ruidos que traten de variar la amplitud de la señal oscilante del lazo, producirá a su vez una modulación aleatoria de la frecuencia de tal señal que se observará como más Ruido de Fase añadido al Térmico. Para dar una prueba empírica sobre la existencia de esta nueva fuente de Ruido de Fase, se diseñó y construyó un oscilador en torno a un resonador mecánico “grande” para tener un Ruido de Fase Térmico despreciable a efectos prácticos. En este oscilador se midió su Ruido de Fase Técnico tanto en función del valor del desfase añadido al lazo de realimentación para apartarlo de su CBF, como en función de la perturbación de amplitud inyectada para mostrar sin ambigüedad la aparición de este Ruido de Fase Técnico cuando el lazo tiene este fallo técnico: que no cumple la Condición Barkhausen de Fase a la frecuencia de resonancia f_0 del resonador, por lo que oscila a otra frecuencia. ABSTRACT In 1966, D. B. Leeson published the article titled “A simple model of feedback oscillator noise spectrum” in which, by means of an equation obtained heuristically and based on known parameters of the oscillators, a model was proposed to estimate the power spectrum that quantifies the Phase Noise of these oscillators. This Phase Noise reveals the random fluctuations that are produced in the phase of the output signal from any oscillator of frequencyf_0. Since then, technological advances have allowed significant progress regarding the measurement of Phase Noise. This way, the narrow flat region that has been found around f_(0 ), is known as Line Widening (LW). This region that Leeson could not detect at that time does not appear in his empirical model. After Leeson’s work, different theories have appeared trying to explain the Phase Noise of oscillators. This Thesis proposes a new theory that explains the Phase Noise power spectrum of a feedback oscillator around a resonator L-C (Inductance-Capacity). Like other theories, ours also relates the oscillator Phase Noise to the thermal noise of the feedback circuitry, but departing from them, our theory uses a new, Complex Model for electrical noise that considers both Fluctuations of electrical energy associated with the capacitive susceptance of the resonator and Dissipations of electrical energy associated with its unavoidable conductance G=1/R, which accounts for the thermal contact between the resonator and its surrounding environment (thermal bath). More specifically, the new theory we propose explains both the Phase Noise region of the spectrum centered at the carrier frequency f_0 that we have called LW and shows a region falling as 〖∆f〗^(-2) as we depart from f_0, and the flat zone or pedestal that appears in the Phase Noise spectrum far from f_0. Being able to quantify the LW and its origin, we can easily explain the appearance of Phase Noise spectrum zones with 〖∆f〗^(-3) slope near the carrier that come from the so called “1/f excess noise” in Solid-State devices and “flicker noise” with 1⁄f^β (0,8≤β≤1,2) spectrum that appears in vacuum devices such as thermoionic valves. Having shown that the part of the Phase Noise of L-C oscillators that we have called Thermal Phase Noise is due to the electrical noise of the electronics used in the oscillator, this Thesis can propose a new source of Phase Noise that we have called Technical Phase Noise, which will appear when the loop phase shift to the resonance frequency f_0 is not 0° or an integer multiple of 360° (Barkhausen Phase Condition, BPC). This Phase Noise that will add to the Thermal one, comes from the random modulation of the loop gain carried out by the Amplitude Automatic Control fighting against noises trying to change the amplitude of the oscillating signal in the loop. In this case, the BPC failure gives rise to a random modulation of the frequency of the output signal that will be observed as more Phase Noise added to the Thermal one. To give an empirical proof on the existence of this new source of Phase Noise, an oscillator was designed and constructed around a “big” mechanical resonator whose Thermal Phase Noise is negligible for practical effects. The Technical Phase Noise of this oscillator has been measured with regard to the phase lag added to the feedback loop to separate it from its BPC, and with regard to the amplitude disturbance injected to show without ambiguity the appearance of this Technical Phase Noise that appears when the loop has this technical failure: that it does not fulfill the Barkhausen Phase Condition at f_0, the resonance frequency of the resonator and therefore it is oscillating at a frequency other than f_0.