11 resultados para environmental planning
em Universidad Politécnica de Madrid
Resumo:
La importancia de conocer bien el entorno para un proyecto arquitectónico es que podemos adaptarlo a nuestras necesidades fisiológicas de Confort Térmico. Podemos decir entonces que el edificio juega un papel fundamental como técnica de control de nuestro entorno. El edificio nos debería entregar un entorno controlado para que nos sintamos bien térmicamente, considerando además, que la arquitectura por sí misma puede lograr dicho confort la mayor parte de las veces. De no ser así, los usuarios tienden a colocar elementos mecánicos, para generar frío o calor artificialmente. Es fundamental entonces que nuestros edificios, tengan una correcta interacción con los recursos naturales del lugar para lograr dicho confort térmico. Pero lograr el Confort Térmico en todos los edificios de una ciudad como unidad, no logrará que la ciudad entera sea confortable térmicamente, ya que las complejas interacciones hacen que la problemática se deba enfrentar como algo sistémico. Esto quiere decir, que para que una ciudad o un conjunto logren la Confortabilidad Térmica deseada por sus habitantes debiera haber sido planificada conforme a variables urbanas que interactúen con el medio natural en forma eficiente. Con la observación de ciertos conjuntos habitacionales antiguos en el interior del Valle del Elqui, Chile y de sus relaciones entre variables urbanas y naturales, queda de manifiesto ciertas características que conllevan a pensar que existió una planificación ambiental en éstos que llevaron a lograr un conjunto con características bioclimáticas. Las evidencias de la existencia en primer lugar de un patrón urbanístico en dichos conjuntos habitacionales antiguos, hacen pensar que dicho patrón se trataría de un patrón bioclimático rural planificado, lo que hace que exista un gran interés por el estudio de estos conjuntos. Hasta ahora, en Chile, los pocos estudios de Confort Térmico que existen, están orientados a edificaciones aisladas, al Confort térmico interior de la edificación en el ámbito urbano, y en nada a Patrones Bioclimáticos de Conjuntos Habitacionales en una situación de ruralidad como a la referida en esta investigación. Además, los estudios referidos al clima urbano, difieren a los del clima rural, por lo que se necesitan mayores estudios aún para comprender mejor la problemática. Es por esto, que la mayoría de los casos mencionados en este estudio son contextualizados al ámbito urbano por carecer de otros estudios rurales. Es en este sentido que esta investigación cobra real importancia y pretende establecer la relación existente entre las variables morfológicas rurales y los recursos naturales del lugar y que generan un confort térmico ideal para sus habitantes, al mismo tiempo, se analiza la existencia de un Patrón Bioclimático en un poblado denominado Algarrobito ubicado en la cuenca del Valle del Elqui, Chile. Es en este sentido que el propósito principal de este trabajo es determinar la real existencia de un Patrón Bioclimático que relacione la morfología rural y edificada de los antiguos poblados pertenecientes a la cuenca del Valle de Elqui Chile con el microclima del lugar. La metodología empleada se basa en realizar primeramente el estudio del microclima del lugar a través de las Cartas Bioclimáticas. Para ello se obtuvo información de datos climatológicos de las estaciones meteorológicas ubicadas en la cuenca del Valle de Elqui, principalmente las más cercanas al lugar de estudio. Mediante una revisión exhaustiva de la información arquitectónica, así como de una labor de reconocimiento en terreno realizada en el poblado seleccionado y de la aplicación del Climograma local, se identificaron las diferentes zonas bioclimáticas del poblado antiguo y potenciales áreas de estudio en el conjunto. Esta actividad incluyó un estudio preliminar de la energía solar local, vientos, humedad, temperaturas y su interacción con el conjunto, permitiendo una primera aproximación a la problemática del espacio exterior y las viviendas. Esto permitió en base a las condicionantes del lugar, la arquitectura vernácula y los materiales descubrir un Patrón en el antiguo conjunto que permitía entregar confortabilidad térmica a sus habitantes y darse cuenta también, que el nuevo conjunto emplazado en el sector no seguía ese patrón con las disfuncionalidades que ello llevaba. Con esto quedó demostrado en primer lugar la existencia de un Patrón Bioclimático rural, los beneficios del patrón, la importancia de éste como causante de Confortabilidad Térmica del conjunto, y por ende de mejor eficiencia energética, así como también, que el nuevo conjunto no sigue para nada este Patrón, pero que existe también la posibilidad de rectificación y por supuesto, que los nuevos desarrollos residenciales del Valle del Elqui, puedan planificarse en base al patrón bioclimático descubierto. ABSTRACT Knowing the environment of an architectonic proyect is really important for adjusting it to our physiological needs of Thermal Comfort. So we can say that the building plays a key role as a technique of control of our environment. The building should give us a controlled environment to make us feel good thermally, and it usually can reach pleasurable temperatures by itself. If it isn't like that, people cooled or heated the ambience with mechanical elements. So a correct interaction between the buildings and natural resources is important to reach a thermal comfort. But achieving Thermal Comfort in all the buildings of a city as a unit will not achieve the whole city is thermally comfortable, because the complex interactions cause the problem needs to be solved as something systemic. This means that for a city or a set reach the Thermal Comfortability desired by its inhabitants, it should have been planned according to the urban variables that interact with the natural environment efficiently. Observing some old housing complexes in Elqui Valley, Chile, and the relationships between their natural and urban variables, some features lead to think that the environmental planning in these led to achieve a set with bioclimatic features. First, the evidences about the existence of an urban pattern in those old housing complexes, make thinking that the pattern would be a planned urban pattern, which generates interest in its study. In Chile, there have been few studies about Thermal Comfort, oriented to isolated buildings and indoor thermal comfort, but Bioclimatic Urban Patterns haven't been studied at all. In this sense, this investigation acquires a real importance and pretends to establish the relationship between urban variables and natural resources of the place that generates a good thermal comfort for its habitants. At the same time, the existence of a Bioclimatic Urban Pattern in Algarrobito, located in Elqui Valley basin, Chile, is analized. It is in this sense that the main purpose of this work is to determine the real existence of a Bioclimatic Urban Pattern, that links the urban and constructive form of the old villages of it with its microclimate. The methodology used is based on performing first the study of the microclimate of the place through the Bioclimatic Cards. To do this, weather stations, located in Elqui valley, near the place that was studied, were used to obtain information of climatological data. The different bioclimatic zones to the old town and potential areas of study in the set were identified, through an exhaustive review of the architectural information, a field reconnaissance work performed on the selected town and the application of the Local Climograph. This activity included a preliminary study of the local solar energy, the winds, the moisture, the temperatures, and their interaction with the set, allowing a first aproximation to troubles of outer space and housing. This allowed, based on the conditions of the place, vernacular architecture and materials, discovering an urban pattern in the old set, which allowed to give thermal comfort to its inhabitants and realize that the new set of the place did not follow this pattern, with the dysfunctions that it carried. These points demonstrated, in first place, the existence of a Bioclimatic Urban Pattern, the benefits of it, the importance of it as a cause of Thermal Comfortability, and therefore a better efficiency of energy, also that the new set doesn’t follow this Pattern at all, but that the posibility of rectification exists and, of course, that the new residencial development in Elqui Valley can be planned based on bioclimatic pattern discovered.
Resumo:
The present study analyzes residential models in coastal areas with large influxes of tourism, the sustainability of their planning and its repercussion on urban values. The project seeks to establish a methodology for territorial valuation through the analysis of externalities that have influenced urban growth and its impact on the formation of residential real estate values. This will make it possible to create a map for qualitative land valuation, resulting from a combination of environmental, landscape, social and productive valuations. This in turn will establish a reference value for each of the areas in question, as well as their spatial interrelations. These values become guidelines for the study of different territorial scenarios, which help improve the sustainable territorial planning process. This is a rating scale for urban planning. The results allow us to establish how the specific characteristics of the coast are valued and how they can be incorporated into sustainable development policies.
Resumo:
Considering that the vast majority of housing stock existing in 2011 will be used to satisfy residential needs in the year 2020 and beyond, ecological urban regeneration appears clearly as the key issue in relation to global urban sustainability for the most part of this century. Thus, if the 1992 Rio Summit identified the urban environment as the main arena where the global environmental crisis should be fought, 20 years later we must emphasize that it is mainly to the real cities and territories around us now where we should address our attention
Resumo:
The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.
Resumo:
The Universidad Politécnica of Madrid (UPM) includes schools and faculties that were for engineering degrees, architecture and computer science, that are now in a quick EEES Bolonia Plan metamorphosis getting into degrees, masters and doctorate structures. They are focused towards action in machines, constructions, enterprises, that are subjected to machines, human and environment created risks. These are present in actions such as use loads, wind, snow, waves, flows, earthquakes, forces and effects in machines, vehicles behavior, chemical effects, and other environmental factors including effects of crops, cattle and beasts, forests, and varied essential economic and social disturbances. Emphasis is for authors in this session more about risks of natural origin, such as for hail, winds, snow or waves that are not exactly known a priori, but that are often considered with statistical expected distributions giving extreme values for convenient return periods. These distributions are known from measures in time, statistic of extremes and models about hazard scenarios and about responses of man made constructions or devices. In each engineering field theories were built about hazards scenarios and how to cover for important risks. Engineers must get that the systems they handle, such as vehicles, machines, firms or agro lands or forests, obtain production with enough safety for persons and with decent economic results in spite of risks. For that risks must be considered in planning, in realization and in operation, and safety margins must be taken but at a reasonable cost. That is a small level of risks will often remain, due to limitations in costs or because of due to strange hazards, and maybe they will be covered by insurance in cases such as in transport with cars, ships or aircrafts, in agro for hail, or for fire in houses or in forests. These and other decisions about quality, security for men or about business financial risks are sometimes considered with Decision Theories models, using often tools from Statistics or operational Research. The authors have done and are following field surveys about risk consideration in the careers in UPM, making deep analysis of curricula taking into account the new structures of degrees in the EEES Bolonia Plan, and they have considered the risk structures offered by diverse schools of Decision theories. That gives an aspect of the needs and uses, and recommendations about improving in the teaching about risk, that may include special subjects especially oriented for each career, school or faculty, so as to be recommended to be included into the curricula, including an elaboration and presentation format using a multi-criteria decision model.
Resumo:
La actividad minera tiene un gran impacto sobre el territorio, probablemente más que ninguna otra de las actividades humanas, ya que transforma el espacio en todas sus dimensiones: ecológica, ambiental, social y económica. Cuando la reducción de la rentabilidad de la explotación conduce al cierre de ésta, la repercusión sobre su entorno puede llegar a ser brutal. Pero las explotaciones mineras son muy distintas entre ellas y los efectos que su abandono producen sobre el espacio en la que se enclavan pueden ser diversos, por lo que la decisión sobre el futuro de estas áreas no es simple y evidente. Aquí se propone desarrollar una propuesta de clasificación tipológica de las minas y sus regiones con el objetivo de determinar las estrategias de intervención más adecuadas para el futuro de estos espacios y sus habitantes. En concreto se busca diferenciar los conceptos de Mina, Parque Minero, Espacio Minero y Región Minera, todos ellos fruto de la interacción de la huella de la actividad minera con el medio físico, los enclaves urbanizados, y la estructura socioeconómica de la región en la que se enclavan. Mining activity is having a great impact on the territory, probably more than any other human activity, which transforms the space in all of its dimensions, ecological, environmental, social and economic. When reducing the profitability of the operation leads to the conclusion thereof, the impact on the environment can be brutal. But mining are very different between them and the effects they produce on their abandonment in space that interlock can be diverse, so the decision on the future of these areas is not simple and obvious. This proposal aims to develop a typological classification of mines and their regions in order to determine the most appropriate intervention strategies for the future of these spaces and their inhabitants. Specifically, it seeks to differentiate the concepts of Mine, Mining Park, Space Miner and Mining Region, all the result of the interaction of the mining footprint with the physical environment, the urbanized enclaves, and the socio-economic structure of the region which interlock. El presente libro reúne las ponencias presentadas por los investigadores de la red REUSE dentro del 1er Simposio de Reutilización del Espacio Minero; evento organizado por la Universidad Federal de Minas Gerais (UFMG) en Belo Horizonte, entre el 1 y el 3 de octubre de 2012, en el marco del 1er Seminario Internacional de Reconversión de Territorios. La red REUSE es una red realizada gracias a la financiación del programa CYTED
Resumo:
We examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH3 concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background. These high resolution spatial details are lost in national scale estimates at 1 km resolution due to less detailed emission input maps. The results demonstrate how the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-natural ecosystems. These spatial relationships provide the foundation for local spatial planning approaches to reduce environmental impacts of atmospheric NH3.
Resumo:
The Shopping centre is a long term investment in which Greenfield development decisions are often taken based on risks analysis regarding construction costs, location, competition, market and an expected DCF. Furthermore, integration between the building design, project planning, operational costs and investment analysis is not entirely considered by the investor at the decision making stage. The absence of such information tends to produce certain negative impacts on the future running costs and annual maintenance of the building, especially on energy demand and other occupancy expenses paid by the tenants to the landlord. From the investor´s point of view, this blind spot in strategy development will possibly decrease their profit margin as changes in the occupancy expenses[ ] have a direct outcome on the profit margin. In order to try to reduce some higher operating cost components such as energy use and other utility savings as well as their CO2 emissions, quite a few income properties worldwide have some type of environmental label such as BREEAM and LEED. The drawback identified in this labelling is that usually the investments required to get an ecolabel are high and the investor finds no direct evidence that it increases market value. However there is research on certified commercial properties (especially offices) that shows better performance in terms of occupancy rate and rental cost (Warren-Myers, 2012). Additionally, Sayce (2013) says that the certification only provides a quick reference point i.e. the lack of a certificate does not indicate that a building is not sustainable or efficient. Based on the issues described above, this research compares important components of the development stages such as investments costs, concept/ strategy development as well as the current investor income and property value. The subjects for this analysis are a shopping centre designed with passive cooling/bioclimatic strategies evaluated at the decision making stage, a certified regional shopping centre and a non-certified standard regional shopping centre. Moreover, the proposal intends to provide decision makers with some tools for linking green design features to the investment analysis in order to optimize the decision making process when looking into cost savings and design quality.
Resumo:
The paper describes some relevant results of an on-going research aiming to elaborate a methodology to help the mobility management in natural parks, compatible with their protection missions: it has been developed a procedure to reproduce the mobility-environment relationships in various operational conditions. The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The work is articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (air pollution and noise only); 6) identification of mitigation measures to be potentially applied. The whole methodology has been tested and validated on Italian case studies: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been represented in an origin-destination matrix. By means of an assignment model the flows have been distributed and the corresponding average speeds to quantify gaseous and noise emissions was calculated, the criticalities in the reference scenario have been highlighted, as well as some alternative scenarios, including both operational and infrastructural measures have been identified. The comparison between projects and reference scenario allowed the quantification of effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
The study area is La Colacha sub-basins from Arroyos Menores basins, natural areas at West and South of Río Cuarto in Province of Córdoba of Argentina, fertile with loess soils and monsoon temperate climate, but with soil erosions including regressive gullies that degrade them progressively. Cultivated gently since some hundred sixty years, coordinated action planning became necessary to conserve lands while keeping good agro-production. The authors had improved data on soils and on hydrology for the study area, evaluated systems of soil uses and actions to be recommended and applied Decision Support Systems (DSS) tools for that, and were conducted to use discrete multi-criteria models (MCDM) for the more global views about soil conservation and hydraulic management actions and about main types of use of soils. For that they used weighted PROMETHEE, ELECTRE, and AHP methods with a system of criteria grouped as environmental, economic and social, and criteria from their data on effects of criteria. The alternatives resulting offer indication for planning depending somehow on sub basins and on selections of weights, but actions for conservation of soils and water management measures are recommended to conserve the basins conditions, actually sensibly degrading, mainly keeping actual uses of the lands.
Resumo:
The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The preliminary work was articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (limited to air pollution and noise); 6) identification of mitigation measures to the potentially applied. The whole methodology has been firstly tested on the case study of the National Park of ?Gran Sasso and Monti della Laga? and further validated on the National Park of ?Gargano?, both located Italy: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been synthetically represented in an origin-destination matrix. By means of an assignment model it has been determined the distribution of flows and the corresponding average speeds to quantify gaseous and noise emissions. On this basis the environmental criticalities in the reference scenario have been highlighted, as well as some alternative scenarios including both operational and infrastructural measures have been identified. The comparison between the projects and the reference scenario allowed the quantification of the effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.