11 resultados para energy forecasting

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liberalization of electricity markets more than ten years ago in the vast majority of developed countries has introduced the need of modelling and forecasting electricity prices and volatilities, both in the short and long term. Thus, there is a need of providing methodology that is able to deal with the most important features of electricity price series, which are well known for presenting not only structure in conditional mean but also time-varying conditional variances. In this work we propose a new model, which allows to extract conditionally heteroskedastic common factors from the vector of electricity prices. These common factors are jointly estimated as well as their relationship with the original vector of series, and the dynamics affecting both their conditional mean and variance. The estimation of the model is carried out under the state-space formulation. The new model proposed is applied to extract seasonal common dynamic factors as well as common volatility factors for electricity prices and the estimation results are used to forecast electricity prices and their volatilities in the Spanish zone of the Iberian Market. Several simplified/alternative models are also considered as benchmarks to illustrate that the proposed approach is superior to all of them in terms of explanatory and predictive power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing energy consumption is one of the main goals of sustainability planning in most countries. For instance in Europe, the EC established the objectives in the Communication “20 20 by 2020 Europe's climate change opportunity”. • Next Generation Networks (NGN)  One of the most relevant upcoming ICT development • The role of energy consumption seems mostly absent from the main analysis and the debate on NGN deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution to global energy consumption of the information and communications technology (ICT) sector has increased considerably in the last decade, along with its growing relevance to the overall economy. This trend will continue due to the seemingly ever greater use of these technologies, with broadband data traffic generated by the usage of telecommunication networks as a primary component. In fact, in response to user demand, the telecommunications industry is initiating the deployment of next generation networks (NGNs). However, energy consumption is mostly absent from the debate on these deployments, in spite of the potential impact on both expenses and sustainability. In addition, consumers are unaware of the energy impact of their choices in ultra-broadband services. This paper focuses on forecasting energy consumption in the access part of NGNs by modelling the combined effect of the deployment of two different ultra-broadband technologies (FTTH-GPON and LTE), the evolution of traffic per user, and the energy consumption in each of the networks and user devices. Conclusions are presented on the levels of energy consumption, their cost and the impact of different network design parameters. The effect of technological developments, techno-economic and policy decisions on energy consumption is highlighted. On the consumer side, practical figures and comparisons across technologies are provided. Although the paper focuses on Spain, the analysis can be extended to similar countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials’ producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids. This uncertainty is a challenge in the design and operation of electrical systems that include photovoltaic generation. Demand-Side Management (DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is available, DSM techniques can use generation forecast to schedule the local consumption. On the other hand, local storage systems can be used to separate electricity availability from instantaneous generation; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM techniques and a local storage system are analyzed in this paper. The study has been performed in a solar house that is able to displace a residential user?s load pattern, manage local storage and estimate forecasts of electricity generation. A series of real experiments and simulations have carried out on the house. The results of this experiments show that the use of Demand Side Management (DSM) and local storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the photovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, the uncertainty would raise to around 40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this paper is the development and application of multivariate time series models for forecasting aggregated wind power production in a country or region. Nowadays, in Spain, Denmark or Germany there is an increasing penetration of this kind of renewable energy, somehow to reduce energy dependence on the exterior, but always linked with the increaseand uncertainty affecting the prices of fossil fuels. The disposal of accurate predictions of wind power generation is a crucial task both for the System Operator as well as for all the agents of the Market. However, the vast majority of works rarely onsider forecasting horizons longer than 48 hours, although they are of interest for the system planning and operation. In this paper we use Dynamic Factor Analysis, adapting and modifying it conveniently, to reach our aim: the computation of accurate forecasts for the aggregated wind power production in a country for a forecasting horizon as long as possible, particularly up to 60 days (2 months). We illustrate this methodology and the results obtained for real data in the leading country in wind power production: Denmark

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a solution for building a better strategy to take part in external electricity markets. For an optimal strategy development, both the internal system costs as well as the future values of the series of electricity prices in external markets need to be known. But in practice, the real problems that must be faced are that both future electricity prices and costs are unknown. Thus, the first ones must be modeled and forecasted and the costs must be calculated. Our methodology for building an optimal strategy consists of three steps: The first step is modeling and forecasting market prices in external systems. The second step is the cost calculation on internal system taking into account the expected prices in the first step. The third step is based on the results of the previous steps, and consists of preparing the bids for external markets. The main goal is to reduce consumers' costs unlike many others that are oriented to increase GenCo's profits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting large and fast variations of wind power (the so called ramps) helps achieve the integration of large amounts of wind energy. This paper presents a survey on wind power ramp forecasting, reflecting the increasing interest on this topic observed since 2007. Three main aspects were identified from the literature: wind power ramp definition, ramp underlying meteorological causes and experi-ences in predicting ramps. In this framework, we additionally outline a number of recommendations and potential lines of research.