2 resultados para eliable cold chain

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A notorious advantage of wireless transmission is a significant reduction and simplification in wiring and harness. There are a lot of applications of wireless systems, but in many occasions sensor nodes require a specific housing to protect the electronics from hush environmental conditions. Nowadays the information is scarce and nonspecific on the dynamic behaviour of WSN and RFID. Therefore the purpose of this study is to evaluate the dynamic behaviour of the sensors. A series of trials were designed and performed covering temperature steps between cold room (5 °C), room temperature (23 °C) and heated environment (35 °C). As sensor nodes: three Crossbow motes, a surface mounted Nlaza module (with sensor Sensirion located on the motherboard), an aerial mounted Nlaza where the Sensirion sensor stayed at the end of a cable), and four tags RFID Turbo Tag (T700 model with and without housing), and 702-B (with and without housing). To assess the dynamic behaviour a first order response approach is used and fitted with dedicated optimization tools programmed in Matlab that allow extracting the time response (?) and corresponding determination coefficient (r2) with regard to experimental data. The shorter response time (20.9 s) is found for the uncoated T 700 tag which encapsulated version provides a significantly higher response (107.2 s). The highest ? corresponds to the Crossbow modules (144.4 s), followed by the surface mounted Nlaza module (288.1 s), while the module with aerial mounted sensor gives a response certainly close above to the T700 without coating (42.8 s). As a conclusion, the dynamic response of temperature sensors within wireless and RFID nodes is dramatically influenced by the way they are housed (to protect them from the environment) as well as by the heat released by the node electronics itself; its characterization is basic to allow monitoring of high rate temperature changes and to certify the cold chain. Besides the time to rise and to recover is significantly different being mostly higher for the latter than for the former.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advantages of wireless sensing implemented on the cold chain of fresh products are well known. These sensor systems consist of a combination of delicate internal electronic circuitry enclosed in a special housing unit. Manufacturers however are presented with the challenge that the housing required to withstand the harsh environment in which the sensors are being used all too often take from the functionality of the sensor. Therefore the target of this study is to determine the dynamic behavior and the counteractive effects of the sensor housing on temperature recording accuracy in the wireless nodes of Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) semi-passive tags. Two kind of semi-passive Turbo Tags were used (T700 and T702-B), which consisted of sensors with and without a cover, and two kind of WSN nodes, IRIS (sensors Intersema and Sensirion soldered in the motherboard) and NLAZA (Sensirion in a cable and soldered to the motherboard). To recreate the temperature profiles the devices were rotated between a cold room(5 ºC) through a ambient room(23 ºC) to a heated environment (35ºC) and vice versa. Analysis revealed the differences between housing and no housing are 308.22s to 21.99s respectively in the step from 5 to 35 ºC. As is demonstrated in these experiments the influence of the housing significantly hinders sensor accuracy.