4 resultados para ecological effects

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tesis Doctoral trata sobre la caracterización acústica de los ecosistemas naturales y la evaluación del impacto ambiental del ruido antropogénico sobre sus potenciales receptores en estos lugares, incluidos los receptores no humanos y sus efectos ecológicos, además, analiza las implicaciones para su gestión a distintas escalas y se lleva a cabo una valoración económica. Este trabajo ofrece soluciones para caracterizar los paisajes sonoros de forma compatible con distintas escalas de trabajo, nivel de esfuerzo técnico y en contextos de recursos limitados que haga viable su tratamiento como cualquier otra variable ambiental en el ámbito de la conservación y gestión del medio natural. Se han adaptado herramientas y metodologías propias de disciplinas como la acústica ambiental, bioacústica y ecología del paisaje, para servir a los objetivos específicos de la evaluación y gestión de los paisajes sonoros y el ruido ambiental en amplias extensiones geográficas. Se ha establecido un método general de muestreo sistemático para trabajo de campo y también se han adaptado métodos de modelización informática, que permiten analizar escenarios sonoros dinámicos en el tiempo y en el espacio, desde localizaciones puntuales hasta la escala del paisaje. Es posible elaborar cartografía ambiental con esta información y se ha representado gráficamente la zona de influencia de distintas fuentes de ruido sobre la calidad de distintos hábitats faunísticos. Se recomienda el uso del indicador del nivel de presión sonora equivalente (Leq) por su operatividad en medición y modelización, y su adaptabilidad a cualquier dimensión espacial y temporal que se requiera, por ejemplo en función del paisaje, actividades o especies que se establezcan como objeto de análisis. Se ha comprobado que las voces y conversaciones de parte de los excursionistas en zonas de reposo, observación y descanso (Laguna Grande de Peñalara) es la fuente de ruido que con mayor frecuencia identifican los propios visitantes (51%) y causa un incremento del nivel de presión sonora equivalente de unos 4,5 dBA sobre el nivel correspondiente al ambiente natural (Lnat). También se ha comprobado que carreteras con bajo nivel de tráfico (IMD<1000) pueden causar estrés fisiológico sobre la fauna y afectar a la calidad de sus hábitats. La isófona de 30 dBA del índice Leq (24h) permite dividir a los corzos de la zona de estudio en dos grupos con diferente nivel de estrés fisiológico, más elevado en los que se sitúan más cerca de la carretera con mayor volumen de tráfico y se expone a mayores niveles de ruido. Por otro lado, ha sido posible delimitar una zona de exclusión para la nidificación de buitre negro alrededor de las carreteras, coincidente con la isófona Leq (24h) de 40 dBA que afecta al 11% de su hábitat potencial. Además se ha llevado a cabo una novedosa valoración económica de la contaminación acústica en espacios naturales protegidos, mediante el análisis de la experiencia sonora de los visitantes del antiguo Parque Natural de Peñalara, y se ha constatado su disposición al pago de una entrada de acceso a estos lugares (aproximadamente 1 euro) si redundara en una mejora de su estado de conservación. En conclusión, los espacios naturales protegidos pueden sufrir un impacto ambiental significativo causado por fuentes de ruido localizadas en su interior pero también lejanas a ellos, que se sitúan fuera del ámbito de competencias de sus gestores. Sucesos sonoros como el sobrevuelo de aviones pueden incrementar en aproximadamente 8 dBA el nivel de referencia Lnat en las zonas tranquilas del parque. Se recomienda llevar a cabo una gestión activa del medio ambiente sonoro y se considera necesario extender la investigación sobre los efectos ecológicos del ruido ambiental a otros lugares y especies animales. ABSTRACT This PhD Thesis deals with acoustic characterization of natural ecosystems and anthropogenic noise impact assessment on potential receivers, including non-human receivers and their ecological effects. Besides, its management implications at different scales are analyzed and an economic valuation is performed. This study provides solutions for characterizing soundscapes in a compatible way with different working scales, level of technical effort and in a context of limited resources, so its treatment becomes feasible as for any other environmental variable in conservation and environmental management. Several tools and methodologies have been adapted from a variety of disciplines such as environmental acoustics, bioacoustics and landscape ecology, to better serve the specific goals of assessing and managing soundscapes and environmental noise in large areas. A procedure has been established for systematic field measurement surveys and noise common computer modelling methods have also been adapted in order to analyze dynamic soundscapes across time and space, from local to landscape scales. It is possible to create specific thematic cartography as for instance delimiting potential influence zone from different noise sources on animal habitats quality. Use of equivalent continuous sound pressure level index (Leq) is recommended because it provides great flexibility in operation for noise measurement and modelling, and because of its adaptability to any required temporal and spatial dimension, for instance landscape, activities or the target species established as study subjects. It has been found that human voices and conversations in a resting and contemplation area (Laguna Grande de Peñalara) is the most frequently referred noise source by national park visitors (51 %) when asked. Human voices alter this recreational area by increasing the sound pressure level approximately 4.5 dBA over the natural ambient level (Lnat). It has also been found that low traffic roads (AADT<1000 ) may cause physiological stress on wildlife and affect the quality of their habitats. It has also been possible to define a road-effect zone by noise mapping, which suggests an effective habitat loss within the Leq (24h) 30 dBA isophone in case of Roe deer and also divide the study area in two groups with different physiological stress level, higher for those exposed to higher noise levels and traffic volume. On the other hand, it has been possible to determine an exclusion area for Cinereous vulture nesting surrounding roads which is coincident with the Leq (24h) 40 dBA isophone and affects 11 % of the vulture potential habitat. It has also been performed an economic estimation of noise pollution impact on visitors’ perception and results showed that visitors would be willing to pay an entrance fee of approximately 1 euro if such payment is really bringing an improvement of the conservation status. In conclusion, protected areas may be significantly affected by anthropogenic noise sources located within the park borders but perturbations may also be caused by large-distance noise sources outside the park managers’ jurisdiction. Aircraft overflight events disrupted quietness and caused Leq increases of almost 8 dBA during a monitoring period with respect to Lnat reference levels in the park quiet areas. It is recommended to actively manage the acoustic environment. Finally, further research on ecological impacts of environmental noise needs to be extended to other species and places.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers in ecology commonly use multivariate analyses (e.g. redundancy analysis, canonical correspondence analysis, Mantel correlation, multivariate analysis of variance) to interpret patterns in biological data and relate these patterns to environmental predictors. There has been, however, little recognition of the errors associated with biological data and the influence that these may have on predictions derived from ecological hypotheses. We present a permutational method that assesses the effects of taxonomic uncertainty on the multivariate analyses typically used in the analysis of ecological data. The procedure is based on iterative randomizations that randomly re-assign non identified species in each site to any of the other species found in the remaining sites. After each re-assignment of species identities, the multivariate method at stake is run and a parameter of interest is calculated. Consequently, one can estimate a range of plausible values for the parameter of interest under different scenarios of re-assigned species identities. We demonstrate the use of our approach in the calculation of two parameters with an example involving tropical tree species from western Amazonia: 1) the Mantel correlation between compositional similarity and environmental distances between pairs of sites, and; 2) the variance explained by environmental predictors in redundancy analysis (RDA). We also investigated the effects of increasing taxonomic uncertainty (i.e. number of unidentified species), and the taxonomic resolution at which morphospecies are determined (genus-resolution, family-resolution, or fully undetermined species) on the uncertainty range of these parameters. To achieve this, we performed simulations on a tree dataset from southern Mexico by randomly selecting a portion of the species contained in the dataset and classifying them as unidentified at each level of decreasing taxonomic resolution. An analysis of covariance showed that both taxonomic uncertainty and resolution significantly influence the uncertainty range of the resulting parameters. Increasing taxonomic uncertainty expands our uncertainty of the parameters estimated both in the Mantel test and RDA. The effects of increasing taxonomic resolution, however, are not as evident. The method presented in this study improves the traditional approaches to study compositional change in ecological communities by accounting for some of the uncertainty inherent to biological data. We hope that this approach can be routinely used to estimate any parameter of interest obtained from compositional data tables when faced with taxonomic uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Successful seed dispersal by animals is assumed to occur when undamaged seeds arrive at a favourable microsite. Most seed removal and dispersal studies consider only two possible seed fates, predation or escape intact. Whether partial consumption of seeds has ecological implications for natural regeneration is unclear. We studied partial consumption of seeds in a rodent-dispersed oak species. 2. Fifteen percent of dispersed acorns were found partially eaten in a field experiment. Most damage affected only the basal portion of the seeds, resulting in no embryo damage. Partially eaten acorns had no differences in dispersal distance compared to intact acorns but were recovered at farther distances than completely consumed acorns. 3. Partially eaten acorns were found under shrub cover unlike intact acorns that were mostly dispersed to open microhabitats. 4. Partially eaten acorns were not found buried proportionally more often than intact acorns, leading to desiccation and exposure to biotic agents (predators, bacteria and fungi). However, partial consumption caused more rapid germination, which enables the acorns to tolerate the negative effects of exposure. 5. Re-caching and shrub cover as microhabitat of destination promote partial seed consumption. Larger acorns escaped predation more often and had higher uneaten cotyledon mass. Satiation at seed level is the most plausible explanation for partial consumption. 6. Partial consumption caused no differences in root biomass when acorns experienced only small cotyledon loss. However, root biomass was lower when acorns experienced heavy loss of tissue but, surprisingly, they produced longer roots, which allow the seeds to gain access sooner to deeper resources. 7.Synthesis. Partial consumption of acorns is an important event in the oak regeneration process, both quantitatively and qualitatively. Most acorns were damaged non-lethally, without decreasing both dispersal distances and the probability of successful establishment. Faster germination and production of longer roots allow partially eaten seeds to tolerate better the exposure disadvantages caused by the removal of the pericarp and the non-buried deposition. Consequently, partially consumed seeds can contribute significantly to natural regeneration and must be considered in future seed dispersal studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the geomorphology of rivers have serious repercussions, causing losses in the dynamics and naturalness of their forms, going in many cases, from a type of meandering channel, with constant erosion and sedimentation processes, to a channelized narrow river with rigid and stable margins, where the only possibility of movement occurs in the vertical, causing the only changes in channel geometry occur in the river bed. On the other hand, these changes seriously affect the naturalness of the banks, preventing the development of riparian vegetation and reducing the cross connectivity of the riparian corridor. Common canalizations and disconnections of meanders increase the slope, and therefore speed, resulting in processes of regressive erosion, effect increased as a result of the narrowing of the channel and the concentration of flows. This process of incision may turn the flood plain to be "hung", being completely disconnected from the water table, with important consequences for vegetation. As an example of the effects of these changes, it has been chosen the case of the Arga River The Arga river has been channelized and rectified, as it passes along the meander RamalHondo and Soto Gil (Funes, Navarra). The effects on fish habitat and riparian vegetation by remeandering the Arga River are presented. and Ttwo very contrasting situationsrestoration hypothesis, in terms of geomorphology concerns, have been established to assess the effects these changes have on the habitat of one of the major fish species in the area (Luciobabus graellsii) and on the riparian vegetation. To accomplish this goal, it has been necessary to used the a digital elevation model provided by LIDAR flight, bathymetric data, flow data, as inputs, and a hydraulic simulation model 2D (Infoworks RS). The results obtained not only helped to evaluate the effects of the past alterations of geomorphologic characteristics, but also to predict fish and vegetation habitat responses to this type of changes.