8 resultados para early detection of cancer
em Universidad Politécnica de Madrid
Resumo:
The Quality of Life of a person may depend on early attention to his neurodevel-opment disorders in childhood. Identification of language disorders under the age of six years old can speed up required diagnosis and/or treatment processes. This paper details the enhancement of a Clinical Decision Support System (CDSS) aimed to assist pediatricians and language therapists at early identification and re-ferral of language disorders. The system helps to fine tune the Knowledge Base of Language Delays (KBLD) that was already developed and validated in clinical routine with 146 children. Medical experts supported the construction of Gades CDSS by getting scientific consensus from literature and fifteen years of regis-tered use cases of children with language disorders. The current research focuses on an innovative cooperative model that allows the evolution of the KBLD of Gades through the supervised evaluation of the CDSS learnings with experts¿ feedback. The deployment of the resulting system is being assessed under a mul-tidisciplinary team of seven experts from the fields of speech therapist, neonatol-ogy, pediatrics, and neurology.
Resumo:
The early detection of spoiling metabolic products in contaminated food is a very important tool to control quality. Some volatile compounds produce unpleasant odours at very low concentrations, making their early detection very challenging. This is the case of 1,3-pentadiene produced by microorganisms through decarboxylation of the preservative sorbate. In this work, we have developed a methodology to use the data produced by a low-cost, compact MWIR (Mid-Wave IR) spectrometry device without moving parts, which is based on a linear array of 128 elements of VPD PbSe coupled to a linear variable filter (LVF) working in the spectral range between 3 and 4.6 ?m. This device is able to analyze food headspace gases through dedicated sample presentation setup. This methodology enables the detection of CO2 and the volatile compound 1,3-pentadiene, as compared to synthetic patrons. Data analysis is based on an automated multidimensional dynamic processing of the MWIR spectra. Principal component and discriminant analysis allow segregating between four yeast strains including producers and no producers. The segregation power is accounted as a measure of the discrimination quality.
Resumo:
A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection
Resumo:
From the last decades, infrared thermography is quite often associated with things other than clinical medicine. For example, the chemical, automobile, aeronautic industries and civil engineering. However, thermography is where infrared images of the breast are analyzed by board certified thermographers and an abnormal thermogram is reported as the significant risk for the existence of breast tumor (Ng, 2009). Thermography is a painless, noninvasive, no radiation, as well as being cheaper and faster, easier access. The aim of this review was to identify the views of clinicians on the use of thermography for quantifying the risk of breast cancer. We used articles published recently in a reliable database. Thermography has been convicted over the years; it has been labeled by subjective interpretation. Most of the reviewed articles agree that mammography is currently the main examination chosen by doctors for the screening of breast cancer (Acharya et al., 2010; Kennedy et al., 2009). However, several studies have reported promising results for the technique (Wang et al., 2010). Additionally, some authors suggest that thermography is complementary to other diagnostic methods, and that the best strategy for the early detection of breast cancer would be to use them together (Kennedy et al., 2009; Hersh, 2004). The combination of thermal imaging with other tests would increase accuracy, sensitivity and specificity of the evaluation and allow a better quantification of the risk of breast cancer.
Resumo:
We present a novel approach for the detection of severe obstructive sleep apnea (OSA) based on patients' voices introducing nonlinear measures to describe sustained speech dynamics. Nonlinear features were combined with state-of-the-art speech recognition systems using statistical modeling techniques (Gaussian mixture models, GMMs) over cepstral parameterization (MFCC) for both continuous and sustained speech. Tests were performed on a database including speech records from both severe OSA and control speakers. A 10 % relative reduction in classification error was obtained for sustained speech when combining MFCC-GMM and nonlinear features, and 33 % when fusing nonlinear features with both sustained and continuous MFCC-GMM. Accuracy reached 88.5 % allowing the system to be used in OSA early detection. Tests showed that nonlinear features and MFCCs are lightly correlated on sustained speech, but uncorrelated on continuous speech. Results also suggest the existence of nonlinear effects in OSA patients' voices, which should be found in continuous speech.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and compared with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.
Resumo:
In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.
Resumo:
Food allergy is recognized as a major public health issue, especially in early childhood. It has been hypothesized that early sensitization to food allergens maybe due to their ingestion as components dissolved in the milk during the breastfeeding, explaining reaction to a food, which has never been taken before. Thus, the aim of this work has been to detect the presence of the food allergens in breast milk by microarray technology. We produced a homemade microarray with antibodies produced against major food allergens. The antibody microarray was incubated with breast milk from 14 women collected from Fundación Jiménez Díaz Hospital. In this way, we demonstrated the presence of major foods allergens in breast milk. The analysis of allergens presented in breast milk could be a useful tool in allergy prevention and could provide us a key data on the role of this feeding in tolerance induction or sensitization in children.