116 resultados para distinct element method
em Universidad Politécnica de Madrid
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
The boundary element method is specially well suited for the analysis of the seismic response of valleys of complicated topography and stratigraphy. In this paper the method’s capabilities are illustrated using as an example an irregularity stratified (test site) sedimentary basin that has been modelled using 2D discretization and the Direct Boundary Element Method (DBEM). Site models displaying different levels of complexity are used in practice. The multi-layered model’s seismic response shows generally good agreement with observed data amplification levels, fundamental frequencies and the high spatial variability. Still important features such as the location of high frequencies peaks are missing. Even 2D simplified models reveal important characteristics of the wave field that 1D modelling does not show up.
Resumo:
The Boundary Element Method is a powerful numerical technique well rooted in everyday engineering practice. This is shown by boundary element methods included in the most important commercial computer packages and in the continuous publication of books composed to explain the features of the method to beginners or practicing engineers. Our first paper in Computers & Structures on Boundary Elements was published in 1979 (C & S 10, pp. 351–362), so this Special Issue is for us not only the accomplishment of our obligation to show other colleagues the possibilities of a numerical technique in which we believe, but also the celebration of our particular silver jubilee with this Journal.
Resumo:
The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic ground motion due to irregular geological configurations, both of layering and topography. The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The obtained transfer functions show excellent agreement with already published results.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.
Resumo:
We introduce a second order in time modified Lagrange--Galerkin (MLG) method for the time dependent incompressible Navier--Stokes equations. The main ingredient of the new method is the scheme proposed to calculate in a more efficient manner the Galerkin projection of the functions transported along the characteristic curves of the transport operator. We present error estimates for velocity and pressure in the framework of mixed finite elements when either the mini-element or the $P2/P1$ Taylor--Hood element are used.
Resumo:
The purpose of this study is to determine the stress distribution in the carpentry joint of halved and tabled scarf joint with the finite element method (FEM) and its comparison with the values obtained using the theory of Strength of Materials. The stress concentration areas where analyzed and the influence of mesh refinement was studied on the results in order to determine the mesh size that provides the stress values more consistent with the theory. In areas where stress concentration is lower, different mesh sizes show similar stress values. In areas where stress concentration occurs, the same values increase considerably with the refinement of the mesh. The results show a central symmetry of the isobar lines distribution where the centre of symmetry corresponds to the geometric centre of the joint. Comparison of normal stress levels obtained by the FEM and the classical theory shows small differences, except at points of stress concentration.
Resumo:
The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.
Resumo:
The B.E. technique is applied to an interesting dynamic problem: the interaction between bridges and their abutments. Several two-dimensional cases have been tested in relation with previously published analytical results. A three-dimensional case is also shown and different considerations in relation with the accuracy of the method are described.
Resumo:
We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, � · �h,∞, and the error analysis shows that when the level set solution u(t) is in the Sobolev space Wr+1,∞(D), r ≥ 0, the convergence in the maximum norm is of the form (KT/Δt)min(1,Δt � v �h,∞ /h)((1 − α)hp + hq), p = min(2, r + 1), and q = min(3, r + 1),where v is a velocity. This means that at high CFL numbers, that is, when Δt > h, the error is O( (1−α)hp+hq) Δt ), whereas at CFL numbers less than 1, the error is O((1 − α)hp−1 + hq−1)). We have tested our method with satisfactory results in benchmark problems such as the Zalesak’s slotted disk, the single vortex flow, and the rising bubble.
Resumo:
As is well known B.E.M. is obtained as a mixture of the integral representation formula of classical elasticity and the discretization philosophy of the finite element method (F.E.M.). The paper presents the application of B.E.M. to elastodynamic problems. Both the transient and steady state solutions are presented as well as some techniques to simplify problems with a free-stress boundary.
Resumo:
En esta carta al editor, el profesor D. Enrique Alarcón Álvarez comenta el artículo de Thomas J. Rudolphi "An implementation of the Boundary Element Method for zoned media with stress discontinuities" publicado en la revista "International Journal for Numerical Methods in Engineering" Vol. 19, Nº 1, pags. 1–15, enero 1983.
Resumo:
An application of the Finite Element Method (FEM) to the solution of a geometric problem is shown. The problem is related to curve fitting i.e. pass a curve trough a set of given points even if they are irregularly spaced. Situations where cur ves with cusps can be encountered in the practice and therefore smooth interpolatting curves may be unsuitable. In this paper the possibilities of the FEM to deal with this type of problems are shown. A particular example of application to road planning is discussed. In this case the funcional to be minimized should express the unpleasent effects of the road traveller. Some comparative numerical examples are also given.
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.