4 resultados para dissolution of geological matrix

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EFDA-ITER programme for materials wants to develop new structural materials for future nuclear magnetic fusion reactors. In this context, special attention must be paid in the development of new composite materials that could support the hard working conditions of the nuclear fusion reactors: high temperature, high stresses, and high radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional time

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.