3 resultados para dimension reduction
em Universidad Politécnica de Madrid
Resumo:
The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP). The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP , in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e., distance from the observer to the object surface). We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. Further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.
Resumo:
The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. In robotics a similar role has been played by modules that fit point cloud data to the superquadric family of shapes and its various extensions. We developed a model of shape tuning in AIP based on cosine tuning to superquadric parameters. However, the model did not fit the data well, and we also found that it was difficult to accurately reproduce these parameters using neural networks with the appropriate inputs (modelled on the caudal intraparietal area, CIP). The latter difficulty was related to the fact that there are large discontinuities in the superquadric parameters between very similar shapes. To address these limitations we adopted an alternative shape parameterization based on an Isomap nonlinear dimension reduction. The Isomap was built using gradients and curvatures of object surface depth. This alternative parameterization was low-dimensional (like superquadrics), but data-driven (similar to an alternative clustering approach that is also sometimes used in robotics) and lacked large discontinuities. Isomaps with 16 or more dimensions reproduced the AIP data fairly well. Moreover, we found that the Isomap parameters could be approximated from CIP-like input much more accurately than the superquadric parameters. We conclude that Isomaps, or perhaps alternative dimension reductions of CIP signals, provide a promising model of AIP tuning. We have now started to integrate our model with a robot hand, to explore the efficacy of Isomap shape reductions in grasp planning. Future work will consider dynamics of spike responses and integration with related visual and motor area models.
Resumo:
Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e.artifacts, in the resulting fusedimages. In many cases, these artifacts appears because image fusion methods do not consider the differences in roughness or textural characteristics between different land covers. They only consider the digital values associated with single pixels. This effect increases as the spatial resolution image increases. To minimize this problem, we propose a new paradigm based on local measurements of the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images (panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, has been used for discrimination of different land covers present in satellite images. This paradigm has been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the à trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape of the regions present in the image to be fused. This improves the quality of the fusedimages and their classification results when compared with the original WAT method