5 resultados para differentially heating
em Universidad Politécnica de Madrid
Resumo:
Semiconductor nanowires (NWs) are fundamental structures for nanoscale devices. The excitation of NWs with laser beams results in thermal effects that can substantially change the spectral shape of the spectroscopic data. In particular, the interpretation of the Raman spectrum is greatly influenced by excitation induced temperature. A study of the interaction of the NWs with the excitation laser beam is essential to interpret the spectra. We present herein a finite element analysis of the interaction between the laser beam and the NWs. The resultas are applied to the interpretation of the Raman spectrum of bundles of NWs
Resumo:
Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.
Resumo:
Estudio de la cinética de la crioconservación de tejidos vegetales
Resumo:
The emission of different harmful gases during the storage of solid fuels is a common phenomenon. The gases emitted during the heating process of those combustibles are the same as those emitted during combustion, mainly CO and CO2[1]. Nowadays, measurement of these emissions is mandatory. That is why in many industrial facilities different gas detectors are located to measure these gases. But it should be also useful if emissions could be predicted and the temperatures at the beginning of the emission process could be determined.
Resumo:
The temperature in a ferromagnetic nanostripe with a notch subject to Joule heating has been studied in detail. We first performed an experimental real-time calibration of the temperature versus time as a 100 ns current pulse was injected into a Permalloy nanostripe. This calibration was repeated for different pulse amplitudes and stripe dimensions and the set of experimental curves were fitted with a computer simulation using the Fourier thermal conduction equation. The best fit of these experimental curves was obtained by including the temperature-dependent behavior of the electrical resistivity of the Permalloy and of the thermal conductivity of thesubstrate(SiO2). Notably, a nonzero interface thermal resistance between the metallic nanostripe and thesubstrate was also necessary to fit the experimental curves. We found this parameter pivotal to understand ourresults and the results from previous works. The higher current density in the notch, together with the interface thermal resistance, allows a considerable increase of the temperature in the notch, creating a large horizontal thermal gradient. This gradient, together with the high temperature in the notch and the larger current density close to the edges of the notch, can be very influential in experiments studying the current assisted domain wall motion.