7 resultados para design III
em Universidad Politécnica de Madrid
Resumo:
Esta memoria está basada en el crecimiento y caracterización de heteroestructuras Al(Ga)N/GaN y nanocolumnas ordenadas de GaN, y su aplicación en sensores químicos. El método de crecimiento ha sido la epitaxia de haces moleculares asistida por plasma (PAMBE). En el caso de las heteroestructuras Al(Ga)N/GaN, se han crecido barreras de distinto espesor y composición, desde AlN de 5 nm, hasta AlGaN de 35 nm. Además de una caracterización morfológica, estructural y eléctrica básica de las capas, también se han fabricado a partir de ellas dispositivos tipo HEMTs. La caracterización eléctrica de dichos dispositivos (carga y movilidad de en el canal bidimensional) indica que las mejores heteroestructuras son aquellas con un espesor de barrera intermedio (alrededor de 20 nm). Sin embargo, un objetivo importante de esta Tesis ha sido verificar las ventajas que podían tener los sensores basados en heteroestructuras AlN/GaN (frente a los típicos basados en AlGaN/GaN), con espesores de barrera muy finos (alrededor de 5 nm), ya que el canal de conducción que se modula por efecto de cambios químicos está más cerca de la superficie en donde ocurren dichos cambios químicos. De esta manera, se han utilizado los dispositivos tipo HEMTs como sensores químicos de pH (ISFETs), y se ha comprobado la mayor sensibilidad (variación de corriente frente a cambios de pH, Ids/pH) en los sensores basados en AlN/GaN frente a los basados en AlGaN/GaN. La mayor sensibilidad es incluso más patente en aplicaciones en las que no se utiliza un electrodo de referencia. Se han fabricado y caracterizado dispositivos ISFET similares utilizando capas compactas de InN. Estos sensores presentan peor estabilidad que los basados en Al(Ga)N/GaN, aunque la sensibilidad superficial al pH era la misma (Vgs/pH), y su sensibilidad en terminos de corriente de canal (Ids/pH) arroja valores intermedios entre los ISFET basados en AlN/GaN y los valores de los basados en AlGaN/GaN. Para continuar con la comparación entre dispositivos basados en Al(Ga)N/GaN, se fabricaron ISFETs con el área sensible más pequeña (35 x 35 m2), de tamaño similar a los dispositivos destinados a las medidas de actividad celular. Sometiendo los dispositivos a pulsos de voltaje en su área sensible, la respuesta de los dispositivos de AlN presentaron menor ruido que los basados en AlGaN. El ruido en la corriente para dispositivos de AlN, donde el encapsulado no ha sido optimizado, fue tan bajo como 8.9 nA (valor rms), y el ruido equivalente en el potencial superficial 38.7 V. Estos valores son más bajos que los encontrados en los dispositivos típicos para la detección de actividad celular (basados en Si), y del orden de los mejores resultados encontrados en la literatura sobre AlGaN/GaN. Desde el punto de vista de la caracterización electro-química de las superficies de GaN e InN, se ha determinado su punto isoeléctrico. Dicho valor no había sido reportado en la literatura hasta el momento. El valor, determinado por medidas de “streaming potential”, es de 4.4 y 4 respectivamente. Este valor es una importante característica a tener en cuenta en sensores, en inmovilización electrostática o en la litografía coloidal. Esta última técnica se discute en esta memoria, y se aplica en el último bloque de investigación de esta Tesis (i.e. crecimiento ordenado). El último apartado de resultados experimentales de esta Tesis analiza el crecimiento selectivo de nanocolumnas ordenadas de GaN por MBE, utilizando mascaras de Ti con nanoagujeros. Se ha estudiado como los distintos parámetros de crecimiento (i.e. flujos de los elementos Ga y N, temperatura de crecimiento y diseño de la máscara) afectan a la selectividad y a la morfología de las nanocolumnas. Se ha conseguido con éxito el crecimiento selectivo sobre pseudosustratos de GaN con distinta orientación cristalina o polaridad; templates de GaN(0001)/zafiro, GaN(0001)/AlN/Si, GaN(000-1)/Si y GaN(11-20)/zafiro. Se ha verificado experimentalmente la alta calidad cristalina de las nanocolumnas ordenadas, y su mayor estabilidad térmica comparada con las capas compactas del mismo material. Las nanocolumnas ordenadas de nitruros del grupo III tienen una clara aplicación en el campo de la optoelectrónica, principalmente para nanoemisores de luz blanca. Sin embargo, en esta Tesis se proponen como alternativa a la utilización de capas compactas o nanocolumnas auto-ensambladas en sensores. Las nanocolumnas auto-ensambladas de GaN, debido a su alta razón superficie/volumen, son muy prometedoras en el campo de los sensores, pero su amplia dispersión en dimensiones (altura y diámetro) supone un problema para el procesado y funcionamiento de dispositivos reales. En ese aspecto, las nanocolumnas ordenadas son más robustas y homogéneas, manteniendo una alta relación superficie/volumen. Como primer experimento en el ámbito de los sensores, se ha estudiado como se ve afectada la emisión de fotoluminiscencia de las NCs ordenadas al estar expuestas al aire o al vacio. Se observa una fuerte caída en la intensidad de la fotoluminiscencia cuando las nanocolumnas están expuestas al aire (probablemente por la foto-adsorción de oxigeno en la superficie), como ya había sido documentado anteriormente en nanocolumnas auto-ensambladas. Este experimento abre el camino para futuros sensores basados en nanocolumnas ordenadas. Abstract This manuscript deals with the growth and characterization of Al(Ga)N/GaN heterostructures and GaN ordered nanocolumns, and their application in chemical sensors. The growth technique has been the plasma-assisted molecular beam epitaxy (PAMBE). In the case of Al(Ga)N/GaN heterostructures, barriers of different thickness and composition, from AlN (5 nm) to AlGaN (35 nm) have been grown. Besides the basic morphological, structural and electrical characterization of the layers, HEMT devices have been fabricated based on these layers. The best electrical characteristics (larger carriers concentration and mobility in the two dimensional electron gas) are those in AlGaN/GaN heterostructures with a medium thickness (around 20 nm). However, one of the goals of this Thesis has been to verify the advantages that sensors based on AlN/GaN (thickness around 7 nm) have compared to standard AlGaN/GaN, because the conduction channel to be modulated by chemical changes is closer to the sensitive area. In this way, HEMT devices have been used as chemical pH sensors (ISFETs), and the higher sensitivity (conductance change related to pH changes, Ids/pH) of AlN/GaN based sensors has been proved. The higher sensibility is even more obvious in application without reference electrode. Similar ISFETs devices have been fabricated based on InN compact layers. These devices show a poor stability, but its surface sensitivity to pH (Vgs/pH) and its sensibility (Ids/pH) yield values between the corresponding ones of AlN/GaN and AlGaN/GaN heterostructures. In order to a further comparison between Al(Ga)N/GaN based devices, ISFETs with smaller sensitive area (35 x 35 m2), similar to the ones used in cellular activity record, were fabricated and characterized. When the devices are subjected to a voltage pulse through the sensitive area, the response of AlN based devices shows lower noise than the ones based on AlGaN. The noise in the current of such a AlN based device, where the encapsulation has not been optimized, is as low as 8.9 nA (rms value), and the equivalent noise to the surface potential is 38.7 V. These values are lower than the found in typical devices used for cellular activity recording (based on Si), and in the range of the best published results on AlGaN/GaN. From the point of view of the electrochemical characterization of GaN and InN surfaces, their isoelectric point has been experimentally determined. Such a value is the first time reported for GaN and InN surfaces. These values are determined by “streaming potential”, being pH 4.4 and 4, respectively. Isoelectric point value is an important characteristic in sensors, electrostatic immobilization or in colloidal lithography. In particular, colloidal lithography has been optimized in this Thesis for GaN surfaces, and applied in the last part of experimental results (i.e. ordered growth). The last block of this Thesis is focused on the selective area growth of GaN nanocolumns by MBE, using Ti masks decorated with nanoholes. The effect of the different growth parameters (Ga and N fluxes, growth temperature and mask design) is studied, in particular their impact in the selectivity and in the morphology of the nanocolumns. Selective area growth has been successful performed on GaN templates with different orientation or polarity; GaN(0001)/sapphire, GaN(0001)/AlN/Si, GaN(000- 1)/Si and GaN(11-20)/sapphire. Ordered nanocolumns exhibit a high crystal quality, and a higher thermal stability (lower thermal decomposition) than the compact layers of the same material. Ordered nanocolumns based on III nitrides have a clear application in optoelectronics, mainly for white light nanoemitters. However, this Thesis proposes them as an alternative to compact layers and self-assembled nanocolumns in sensor applications. Self-assembled GaN nanocolumns are very appealing for sensor applications, due to their large surface/volume ratio. However, their large dispersion in heights and diameters are a problem in terms of processing and operation of real devices. In this aspect, ordered nanocolumns are more robust and homogeneous, keeping the large surface/volume ratio. As first experimental evidence of their sensor capabilities, ordered nanocolumns have been studied regarding their photoluminiscence on air and vacuum ambient. A big drop in the intensity is observed when the nanocolumns are exposed to air (probably because of the oxygen photo-adsortion), as was already reported in the case of self-assembled nanocolumns. This opens the way to future sensors based on ordered III nitrides nanocolumns.
Resumo:
En este trabajo se han cubierto diferentes asuntos del diseño neutrónico de los aspectos radiológicos de las dos instalaciones del proyecto HiPER. El proyecto HiPER es un proyecto europeo concebido en el marco del programa ESFRI (European Scientific Facilities Research Infrastructure). Está destinado al desarrollo de la energía de fusión nuclear inercial mediante el uso de láseres y el esquema iluminación directa. Consecuentemente, se trata de una instalación con fines exclusivamente civiles. Se divide en dos fases, correspondientes con dos instalaciones: HiPER Engineering y HiPER Reactor. La instalación HiPER Engineering desarrollará las tecnologías implicadas en la ignición de alta repetición de cápsulas de DT por iluminación directa. El HiPER Reactor será una planta demostradora que produzca electricidad haciendo uso de las tecnologías desarrolladas durante la fase HiPER Engineering. El HiPER Engineering se centrará en las tecnologías relevantes para las igniciones a alta repetición de cápsulas de DT usando la iluminación directa. El principal esfuerzo de desarrollo tecnológico se hará en todos los asuntos directamente relacionados con la ignición: láseres, óptica, inyector, y fabricación masiva de cápsulas entre otros. Se espera una producción de entre 5200 MJ/año y 120000 MJ/año dependiendo del éxito de la instalación. Comparado con la energía esperada en NIF, 1200 MJ/año, se trata de un reto y un paso más allá en la protección radiológica. En este trabajo se ha concebido una instalación preliminar. Se ha evaluado desde el punto de vista de la protección radiológica, siendo las personas y la óptica el objeto de protección de este estudio. Se ha establecido una zonificación durante la operación y durante el mantenimiento de la instalación. Además, se ha llevado a cabo una evaluación de la selección de materiales para la cámara de reacción desde el punto de vista de gestión de residuos radiactivos. El acero T91 se ha seleccionado por, siendo un acero comercial, presentar el mismo comportamiento que el acero de baja activación EUROFER97 al evaluarse como residuo con el nivel de irradiación de HiPER Engineering. Teniendo en cuenta los resultados obtenidos para la instalación preliminar y las modificaciones de la instalación motivadas en otros campos, se ha propuesto una instalación avanzada también en este trabajo. Un análisis más profundo de los aspectos radiológicos, así como una evaluación completa de la gestión de todos los residuos radiactivos generados en la instalación se ha llevado a cabo. La protección radiológica se ha incrementado respecto de la instalación preliminar, y todos los residuos pueden gestionarse en un plazo de 30 sin recurrir al enterramiento de residuos. El HiPER Reactor sera una planta demostradora que produzca electricidad basada en las tecnologías de ignición desarrolladas durante la fase HiPER Engineering. El esfuerzo de desarrollo tecnológico se llevará a cabo en los sistemas relacionados con la generación de electricidad en condiciones económicas: manto reproductor de tritio, ciclos de potencia, vida y mantenimiento de componentes, o sistemas de recuperación de tritio entre otros. En este trabajo la principal contribución a HiPER Reactor está relacionada con el diseño de la cámara de reacción y sus extensiones en la planta. La cámara de reacción es la isla nuclear más importante de la planta, donde la mayoría de las reacciones nucleares tienen lugar. Alberga la primera pared, el manto reproductor de tritio y la vasija de vacío. Todo el trabajo realizado aquí ha pivotado en torno al manto reproductor de tritio y sus interacciones con el resto de componentes de la planta. Tras una revisión profunda de la bibliografía de los diseños recientes de cámaras de reacción con características similares a HiPER Reactor, se ha propuesto y justificado un esquema tecnológico innovador para el manto reproductor de tritio. El material fértil selecconado es el eutéctico 15.7 at.% Litio – 84.3 at.% Plomo, LiPb, evitando el uso de berilio como multiplicador neutrónico mientras se garantiza el ajuste online de la tasa de reproducción de tritio mediante el ajuste en el enriquecimiento en 6Li. Aunque se podría haber elegido Litio purom el LiPb evita problemas relacionados con la reactividad química. El precio a pagar es un reto materializado como inventario radiactivo de Z alto en el lazo de LiPb que debe controlarse. El material estructural seleccionado es el acero de baja activación EUROFER97, que estará en contacto directo con le LiPb fluyendo a alta velocidad. En este esquema tecnológico, el LiPb asegurará la autosuficiente de tritio de la planta mientras el propio LiPb extrae del manto el calor sobre él depositado por los neutrones. Este esquema recibe el nombre de manto de Litio-Plomo auto-refrigerado (SCLL por sus siglas en inglés). Respecto de los conceptos SCLL previos, es destacable que nos e requieren componentes del SiC, puesto que no hay campos magnéticos en la cámara de reacción. Consecuentemente, el manto SCLL propuesto para HiPER presenta riesgo tecnológicos moderados, similares a otros dispositivos de fusión magnética, como el HCLL, e incluso inferiores a los del DCLL, puesto que no se require SiC. Los retos que se deben afrontar son el control del inventario de Z alto así como las tasas de corrosión derivadas de la interacción del LiPb con el EUROFE97. En este trabajo se abordan ambos aspectos, y se presentan los respectivos análisis, junto con otros aspectos neutrónicos y de activación, tales como la protección de la vasija de vacío por parte del material fértil para garantizar la resoldabilidad de por vida en la cara externa de la vasija. También se propone y se estudio un ciclo de potencia de Brayton de Helio para dos configuraciones diferentes de refrigeración del sistema primera pared-manto reproductor. Las principales conclusiones de estos estudios son: i) el inventario de Z alto puede controlarse y es comparable al que se encuentra en dispositivos de fusión similares, ii)la vasija de vacío requiere una mayor protección frente a la radiación neutrónica y iii) las tasas de corrosión son demasiado altas y la temperatura media de salida del LiPb es demasiado baja. Tiendo en cuenta estos resultados juntos con otras consideraciones relacionadas con el mantenimiento de componentes y la viabilidad constructiva, se ha propuesto una evolución de la cámara de reacción. Las evoluciones más destacables son la introducción de un reflector neutrónico de grafito, la modificación de la configuración de la óptica final, la forma y el tamaño de la cámara de vacío y una nueva subdivisión modular del manto. Se ha evaluado desde el punto de vista neutrónico, y su análisis y posterior evolución queda fuera del objeto de este trabajo. Los códigos utilizados en este trabajo son: CATIA para la generación de geometrías 3D complejas MCAM para la traducción de archivos de CATIA a formato de input de MCNP MCNP para el transporte de la radiación (neutrones y gammas) y sus respuestas asociadas ACAB para la evolución del inventario isotópico y sus respuestas asociadas MC2ACAB para acoplar MCNP y ACAB para el cómputo de dosis en parada usando la metodología R2S basada en celda. Moritz para visualizar los reultados de MCNP FLUENT para llevar a cabo cálculos de fluido-dinámica Para llevar a cabo este trabajo, han sido necesarias unas destrezas computacionales. Las más relevantes utilizadas son: generación de geometrás 3D complejas y transmisión a MCNP, diferentes tñecnica de reducción de varianza como importancia por celdas y weight windows basado en malla, metodología Rigorous-two-Steps basada en celdas para el cálculo de dosis en parada y la modificación del código ACAB para el cálculos con múltiples espectros en la misma simulación. Como resumen, la contribución de este trabajo al proyecto HiPER son dos diseños conceptuales de instalación: una para HiPER Engineering y otra para HiPER Reactor. La primera se ha estudio en profundidad desde el punto de vista de protección radiológica y gestión de residuos, mientras que la segunda se ha estudiado desde el punto de vista de operación: seguridad, comportamiento, vida y mantenimiento de componentes y eficiencia del ciclo de potencia.
Resumo:
For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells.
Resumo:
El presente proyecto trata el diseño del sostenimiento y revestimiento del túnel de aducción de la Central hidroeléctrica Renace III. Se ha diseñado un sostenimiento con el fin de cumplir de forma óptima los requisitos funcionales , estructurales y económicos, garantizando de forma primordial la seguridad y durabilidad de la construcción. A partir del conocimiento geológico-geotécnico del macizo encajante se definen mediante clasificaciones geomecánicas divisiones del terreno en función de su calidad. Para cada una de ellas se ha definido una sección tipo de sostenimiento estableciendo sus respectivas especificaciones. A la justificación del cumplimiento de los requisitos se llega mediante distintos métodos empíricos y de cálculo, operando de la misma forma a la hora de decidir el revestimiento. Por último se ha definido la impermeabilización y el plan de auscultación con el fin de garantizar la seguridad y estanqueidad del túnel. ABSTRACT The aim of this project is to design the support and lining of the adduction tunnel in Renace III Hydroelectric Plant. The support has been defined to optimize functional structural and economical demands guaranteeing the tunnel´s safety and durability. Starting with an exhaustive knowledge of the rock mass, divisions of the quality ground by using geomechanical classifications shall be done. Special support for each division has been defined through several empirical and mathematical methods, using the same process to define the lining. Finally, a waterproofing and an auscultation plan has been designed in order to provide sealing and protection
Resumo:
Esta Tesis trata sobre el desarrollo y crecimiento -mediante tecnología MOVPE (del inglés: MetalOrganic Vapor Phase Epitaxy)- de células solares híbridas de semiconductores III-V sobre substratos de silicio. Esta integración pretende ofrecer una alternativa a las células actuales de III-V, que, si bien ostentan el récord de eficiencia en dispositivos fotovoltaicos, su coste es, a día de hoy, demasiado elevado para ser económicamente competitivo frente a las células convencionales de silicio. De este modo, este proyecto trata de conjugar el potencial de alta eficiencia ya demostrado por los semiconductores III-V en arquitecturas de células fotovoltaicas multiunión con el bajo coste, la disponibilidad y la abundancia del silicio. La integración de semiconductores III-V sobre substratos de silicio puede afrontarse a través de diferentes aproximaciones. En esta Tesis se ha optado por el desarrollo de células solares metamórficas de doble unión de GaAsP/Si. Mediante esta técnica, la transición entre los parámetros de red de ambos materiales se consigue por medio de la formación de defectos cristalográficos (mayoritariamente dislocaciones). La idea es confinar estos defectos durante el crecimiento de sucesivas capas graduales en composición para que la superficie final tenga, por un lado, una buena calidad estructural, y por otro, un parámetro de red adecuado. Numerosos grupos de investigación han dirigido sus esfuerzos en los últimos años en desarrollar una estructura similar a la que aquí proponemos. La mayoría de éstos se han centrado en entender los retos asociados al crecimiento de materiales III-V, con el fin de conseguir un material de alta calidad cristalográfica. Sin embargo, prácticamente ninguno de estos grupos ha prestado especial atención al desarrollo y optimización de la célula inferior de silicio, cuyo papel va a ser de gran relevancia en el funcionamiento de la célula completa. De esta forma, y con el fin de completar el trabajo hecho hasta el momento en el desarrollo de células de III-V sobre silicio, la presente Tesis se centra, fundamentalmente, en el diseño y optimización de la célula inferior de silicio, para extraer su máximo potencial. Este trabajo se ha estructurado en seis capítulos, ordenados de acuerdo al desarrollo natural de la célula inferior. Tras un capítulo de introducción al crecimiento de semiconductores III-V sobre Si, en el que se describen las diferentes alternativas para su integración; nos ocupamos de la parte experimental, comenzando con una extensa descripción y caracterización de los substratos de silicio. De este modo, en el Capítulo 2 se analizan con exhaustividad los diferentes tratamientos (tanto químicos como térmicos) que deben seguir éstos para garantizar una superficie óptima sobre la que crecer epitaxialmente el resto de la estructura. Ya centrados en el diseño de la célula inferior, el Capítulo 3 aborda la formación de la unión p-n. En primer lugar se analiza qué configuración de emisor (en términos de dopaje y espesor) es la más adecuada para sacar el máximo rendimiento de la célula inferior. En este primer estudio se compara entre las diferentes alternativas existentes para la creación del emisor, evaluando las ventajas e inconvenientes que cada aproximación ofrece frente al resto. Tras ello, se presenta un modelo teórico capaz de simular el proceso de difusión de fosforo en silicio en un entorno MOVPE por medio del software Silvaco. Mediante este modelo teórico podemos determinar qué condiciones experimentales son necesarias para conseguir un emisor con el diseño seleccionado. Finalmente, estos modelos serán validados y constatados experimentalmente mediante la caracterización por técnicas analíticas (i.e. ECV o SIMS) de uniones p-n con emisores difundidos. Uno de los principales problemas asociados a la formación del emisor por difusión de fósforo, es la degradación superficial del substrato como consecuencia de su exposición a grandes concentraciones de fosfina (fuente de fósforo). En efecto, la rugosidad del silicio debe ser minuciosamente controlada, puesto que éste servirá de base para el posterior crecimiento epitaxial y por tanto debe presentar una superficie prístina para evitar una degradación morfológica y cristalográfica de las capas superiores. En este sentido, el Capítulo 4 incluye un análisis exhaustivo sobre la degradación morfológica de los substratos de silicio durante la formación del emisor. Además, se proponen diferentes alternativas para la recuperación de la superficie con el fin de conseguir rugosidades sub-nanométricas, que no comprometan la calidad del crecimiento epitaxial. Finalmente, a través de desarrollos teóricos, se establecerá una correlación entre la degradación morfológica (observada experimentalmente) con el perfil de difusión del fósforo en el silicio y por tanto, con las características del emisor. Una vez concluida la formación de la unión p-n propiamente dicha, se abordan los problemas relacionados con el crecimiento de la capa de nucleación de GaP. Por un lado, esta capa será la encargada de pasivar la subcélula de silicio, por lo que su crecimiento debe ser regular y homogéneo para que la superficie de silicio quede totalmente pasivada, de tal forma que la velocidad de recombinación superficial en la interfaz GaP/Si sea mínima. Por otro lado, su crecimiento debe ser tal que minimice la aparición de los defectos típicos de una heteroepitaxia de una capa polar sobre un substrato no polar -denominados dominios de antifase-. En el Capítulo 5 se exploran diferentes rutinas de nucleación, dentro del gran abanico de posibilidades existentes, para conseguir una capa de GaP con una buena calidad morfológica y estructural, que será analizada mediante diversas técnicas de caracterización microscópicas. La última parte de esta Tesis está dedicada al estudio de las propiedades fotovoltaicas de la célula inferior. En ella se analiza la evolución de los tiempos de vida de portadores minoritarios de la base durante dos etapas claves en el desarrollo de la estructura Ill-V/Si: la formación de la célula inferior y el crecimiento de las capas III-V. Este estudio se ha llevado a cabo en colaboración con la Universidad de Ohio, que cuentan con una gran experiencia en el crecimiento de materiales III-V sobre silicio. Esta tesis concluye destacando las conclusiones globales del trabajo realizado y proponiendo diversas líneas de trabajo a emprender en el futuro. ABSTRACT This thesis pursues the development and growth of hybrid solar cells -through Metal Organic Vapor Phase Epitaxy (MOVPE)- formed by III-V semiconductors on silicon substrates. This integration aims to provide an alternative to current III-V cells, which, despite hold the efficiency record for photovoltaic devices, their cost is, today, too high to be economically competitive to conventional silicon cells. Accordingly, the target of this project is to link the already demonstrated efficiency potential of III-V semiconductor multijunction solar cell architectures with the low cost and unconstrained availability of silicon substrates. Within the existing alternatives for the integration of III-V semiconductors on silicon substrates, this thesis is based on the metamorphic approach for the development of GaAsP/Si dual-junction solar cells. In this approach, the accommodation of the lattice mismatch is handle through the appearance of crystallographic defects (namely dislocations), which will be confined through the incorporation of a graded buffer layer. The resulting surface will have, on the one hand a good structural quality; and on the other hand the desired lattice parameter. Different research groups have been working in the last years in a structure similar to the one here described, being most of their efforts directed towards the optimization of the heteroepitaxial growth of III-V compounds on Si, with the primary goal of minimizing the appearance of crystal defects. However, none of these groups has paid much attention to the development and optimization of the bottom silicon cell, which, indeed, will play an important role on the overall solar cell performance. In this respect, the idea of this thesis is to complete the work done so far in this field by focusing on the design and optimization of the bottom silicon cell, to harness its efficiency. This work is divided into six chapters, organized according to the natural progress of the bottom cell development. After a brief introduction to the growth of III-V semiconductors on Si substrates, pointing out the different alternatives for their integration; we move to the experimental part, which is initiated by an extensive description and characterization of silicon substrates -the base of the III-V structure-. In this chapter, a comprehensive analysis of the different treatments (chemical and thermal) required for preparing silicon surfaces for subsequent epitaxial growth is presented. Next step on the development of the bottom cell is the formation of the p-n junction itself, which is faced in Chapter 3. Firstly, the optimization of the emitter configuration (in terms of doping and thickness) is handling by analytic models. This study includes a comparison between the different alternatives for the emitter formation, evaluating the advantages and disadvantages of each approach. After the theoretical design of the emitter, it is defined (through the modeling of the P-in-Si diffusion process) a practical parameter space for the experimental implementation of this emitter configuration. The characterization of these emitters through different analytical tools (i.e. ECV or SIMS) will validate and provide experimental support for the theoretical models. A side effect of the formation of the emitter by P diffusion is the roughening of the Si surface. Accordingly, once the p-n junction is formed, it is necessary to ensure that the Si surface is smooth enough and clean for subsequent phases. Indeed, the roughness of the Si must be carefully controlled since it will be the basis for the epitaxial growth. Accordingly, after quantifying (experimentally and by theoretical models) the impact of the phosphorus on the silicon surface morphology, different alternatives for the recovery of the surface are proposed in order to achieve a sub-nanometer roughness which does not endanger the quality of the incoming III-V layers. Moving a step further in the development of the Ill-V/Si structure implies to address the challenges associated to the GaP on Si nucleation. On the one hand, this layer will provide surface passivation to the emitter. In this sense, the growth of the III-V layer must be homogeneous and continuous so the Si emitter gets fully passivated, providing a minimal surface recombination velocity at the interface. On the other hand, the growth should be such that the appearance of typical defects related to the growth of a polar layer on a non-polar substrate is minimized. Chapter 5 includes an exhaustive study of the GaP on Si nucleation process, exploring different nucleation routines for achieving a high morphological and structural quality, which will be characterized by means of different microscopy techniques. Finally, an extensive study of the photovoltaic properties of the bottom cell and its evolution during key phases in the fabrication of a MOCVD-grown III-V-on-Si epitaxial structure (i.e. the formation of the bottom cell; and the growth of III-V layers) will be presented in the last part of this thesis. This study was conducted in collaboration with The Ohio State University, who has extensive experience in the growth of III-V materials on silicon. This thesis concludes by highlighting the overall conclusions of the presented work and proposing different lines of work to be undertaken in the future.
Resumo:
Los sistemas micro electro mecánicos (MEMS) han demostrado ser una exitosa familia de dispositivos que pueden usarse como plataforma para el desarrollo de dispositivos con aplicaciones en óptica, comunicaciones, procesado de señal y sensorización. Los dispositivos MEMS estándar suelen estar fabricados usando tecnología de silicio. Sin embargo, el rendimiento de estos MEMS se puede mejorar si se usan otros materiales. Por ejemplo, el diamante nanocristalino (NCD) ofrece unas excelentes propiedades mecánicas, transparencia y una superficie fácil de funcionalizar. Por otro lado, el sistema de materiales (In; Ga; Al)N, los materiales IIIN, se pueden usar para producir estructuras monocristalinas con alta sensibilidad mecánica y química. Además, el AlN se puede depositar por pulverización catódica reactiva sobre varios substratos, incluyendo NCD, para formar capas policristalinas orientadas con alta respuesta piezoeléctrica. Adicionalmente, tanto el NCD como los materiales III-N muestran una gran estabilidad térmica y química, lo que los hace una elección idónea para desarrollar dispositivos para aplicaciones para alta temperatura, ambientes agresivos e incluso para aplicaciones biocompatibles. En esta tesis se han usado estos materiales para el diseño y medición de demostradores tecnológicos. Se han perseguido tres objetivos principales: _ Desarrollo de unos procesos de fabricación apropiados. _ Medición de las propiedades mecánicas de los materiales y de los factores que limitan el rendimiento de los dispositivos. _ Usar los datos medidos para desarrollar dispositivos demostradores complejos. En la primera parte de esta tesis se han estudiado varias técnicas de fabricación. La estabilidad de estos materiales impide el ataque y dificulta la producción de estructuras suspendidas. Los primeros capítulos de esta disertación se dedican al desarrollo de unos procesos de transferencia de patrones por ataque seco y a la optimización del ataque húmedo sacrificial de varios substratos propuestos. Los resultados de los procedimientos de ataque se presentan y se describe la optimización de las técnicas para la fabricación de estructuras suspendidas de NCD y materiales III-N. En un capítulo posterior se estudia el crecimiento de AlN por pulverización catódica. Como se ha calculado en esta disertación para obtener una actuación eficiente de MEMS, las capas de AlN han de ser finas, típicamente d < 200 nm, lo que supone serias dificultades para la obtención de capas orientadas con respuesta piezoeléctrica. Las condiciones de depósito se han mapeado para identificar las fronteras que proporcionan el crecimiento de material orientado desde los primeros pasos del proceso. Además, durante la optimización de los procesos de ataque se estudió un procedimiento para fabricar películas de GaN nanoporoso. Estas capas porosas pueden servir como capas sacrificiales para la fabricación de estructuras suspendidas de GaN con baja tensión residual o como capas para mejorar la funcionalización superficial de sensores químicos o biológicos. El proceso de inducción de poros se discutirá y también se presentarán experimentos de ataque y funcionalización. En segundo lugar, se han determinado las propiedades mecánicas del NCD y de los materiales III-N. Se han fabricado varias estructuras suspendidas para la medición del módulo de Young y de la tensión residual. Además, las estructuras de NCD se midieron en resonancia para calcular el rendimiento de los dispositivos en términos de frecuencia y factor de calidad. Se identificaron los factores intrínsecos y extrínsecos que limitan ambas figuras de mérito y se han desarrollado modelos para considerar estas imperfecciones en las etapas de diseño de los dispositivos. Por otra parte, los materiales III-N normalmente presentan grandes gradientes de deformación residual que causan la deformación de las estructuras al ser liberadas. Se han medido y modelado estos efectos para los tres materiales binarios del sistema para proporcionar puntos de interpolación que permitan predecir las características de las aleaciones del sistema III-N. Por último, los datos recabados se han usado para desarrollar modelos analíticos y numéricos para el diseño de varios dispositivos. Se han estudiado las propiedades de transducción y se proporcionan topologías optimizadas. En el último capítulo de esta disertación se presentan diseños optimizados de los siguientes dispositivos: _ Traviesas y voladizos de AlN=NCD con actuación piezoeléctrica aplicados a nanoconmutadores de RF para señales de alta potencia. _ Membranas circulares de AlN=NCD con actuación piezoeléctrica aplicadas a lentes sintonizables. _ Filtros ópticos Fabry-Pérot basados en cavidades aéreas y membranas de GaN actuadas electrostáticamente. En resumen, se han desarrollado unos nuevos procedimientos optimizados para la fabricación de estructuras de NCD y materiales III-N. Estas técnicas se han usado para producir estructuras que llevaron a la determinación de las principales propiedades mecánicas y de los parámetros de los dispositivos necesarios para el diseño de MEMS. Finalmente, los datos obtenidos se han usado para el diseño optimizado de varios dispositivos demostradores. ABSTRACT Micro Electro Mechanical Systems (MEMS) have proven to be a successful family of devices that can be used as a platform for the development of devices with applications in optics, communications, signal processing and sensorics. Standard MEMS devices are usually fabricated using silicon based materials. However, the performance of these MEMS can be improved if other material systems are used. For instance, nanocrystalline diamond (NCD) offers excellent mechanical properties, optical transparency and ease of surface functionalization. On the other hand, the (In; Ga; Al)N material system, the III-N materials, can be used to produce single crystal structures with high mechanical and chemical sensitivity. Also, AlN can be deposited by reactive sputtering on various substrates, including NCD, to form oriented polycrystalline layers with high piezoelectric response. In addition, both NCD and III-N materials exhibit high thermal and chemical stability, which makes these material the perfect choice for the development of devices for high temperatures, harsh environments and even biocompatible applications. In this thesis these materials have been used for the design and measurement of technological demonstrators. Three main objectives have been pursued: _ Development of suitable fabrication processes. _ Measurement of the material mechanical properties and device performance limiting factors. _ Use the gathered data to design complex demonstrator devices. In a first part of the thesis several fabrication processes have been addressed. The stability of these materials hinders the etching of the layers and hampers the production of free standing structures. The first chapters of this dissertation are devoted to the development of a dry patterning etching process and to sacrificial etching optimization of several proposed substrates. The results of the etching processes are presented and the optimization of the technique for the manufacturing of NCD and III-N free standing structures is described. In a later chapter, sputtering growth of thin AlN layers is studied. As calculated in this dissertation, for efficient MEMS piezoelectric actuation the AlN layers have to be very thin, typically d < 200 nm, which poses serious difficulties to the production of c-axis oriented material with piezoelectric response. The deposition conditions have been mapped in order to identify the boundaries that give rise to the growth of c-axis oriented material from the first deposition stages. Additionally, during the etching optimization a procedure for fabricating nanoporous GaN layers was also studied. Such porous layers can serve as a sacrificial layer for the release of low stressed GaN devices or as a functionalization enhancement layer for chemical and biological sensors. The pore induction process will be discussed and etching and functionalization trials are presented. Secondly, the mechanical properties of NCD and III-N materials have been determined. Several free standing structures were fabricated for the measurement of the material Young’s modulus and residual stress. In addition, NCD structures were measured under resonance in order to calculate the device performance in terms of frequency and quality factor. Intrinsic and extrinsic limiting factors for both figures were identified and models have been developed in order to take into account these imperfections in the device design stages. On the other hand, III-N materials usually present large strain gradients that lead to device deformation after release. These effects have been measured and modeled for the three binary materials of the system in order to provide the interpolation points for predicting the behavior of the III-N alloys. Finally, the gathered data has been used for developing analytic and numeric models for the design of various devices. The transduction properties are studied and optimized topologies are provided. Optimized design of the following devices is presented at the last chapter of this dissertation: _ AlN=NCD piezoelectrically actuated beams applied to RF nanoswitches for large power signals. _ AlN=NCD piezoelectrically actuated circular membranes applied to tunable lenses. _ GaN based air gap tunable optical Fabry-Pérot filters with electrostatic actuation. On the whole, new optimized fabrication processes has been developed for the fabrication of NCD and III-N MEMS structures. These processing techniques was used to produce structures that led to the determination of the main mechanical properties and device parameters needed for MEMS design. Lastly, the gathered data was used for the design of various optimized demonstrator devices.
Resumo:
Nonradiative recombination in inverted GaInP junctions is dramatically reduced using a rear-heterojunction design rather than the more traditional thin-emitter homojunction design. When this GaInP junction design is included in inverted multijunction solar cells, the high radiative efficiency translates into both higher subcell voltage and high luminescence coupling to underlying subcells, both of which contribute to improved performance. Subcell voltages within two and four junction devices are measured by electroluminescence and the internal radiative efficiency is quantified as a function of recombination current using optical modeling. The performance of these concentrator multijunction devices is compared with the Shockley–Queisser detailed-balance radiative limit, as well as an internal radiative limit, which considers the effects of the actual optical environment in which a perfect junction may exist.