2 resultados para depression analysis
em Universidad Politécnica de Madrid
Resumo:
Magnetoencephalography (MEG) allows the real-time recording of neural activity and oscillatory activity in distributed neural networks. We applied a non-linear complexity analysis to resting-state neural activity as measured using whole-head MEG. Recordings were obtained from 20 unmedicated patients with major depressive disorder and 19 matched healthy controls. Subsequently, after 6 months of pharmacological treatment with the antidepressant mirtazapine 30 mg/day, patients received a second MEG scan. A measure of the complexity of neural signals, the Lempel–Ziv Complexity (LZC), was derived from the MEG time series. We found that depressed patients showed higher pre-treatment complexity values compared with controls, and that complexity values decreased after 6 months of effective pharmacological treatment, although this effect was statistically significant only in younger patients. The main treatment effect was to recover the tendency observed in controls of a positive correlation between age and complexity values. Importantly, the reduction of complexity with treatment correlated with the degree of clinical symptom remission. We suggest that LZC, a formal measure of neural activity complexity, is sensitive to the dynamic physiological changes observed in depression and may potentially offer an objective marker of depression and its remission after treatment.
Resumo:
There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at province and department level in Ecuador and Peru, respectively.