20 resultados para density function theory
em Universidad Politécnica de Madrid
Resumo:
Intermittency phenomenon is a continuous route from regular to chaotic behaviour. Intermittency is an occurrence of a signal that alternates chaotic bursts between quasi-regular periods called laminar phases, driven by the so called reinjection probability density function (RPD). In this paper is introduced a new technique to obtain the RPD for type-II and III intermittency. The new RPD is more general than the classical one and includes the classical RPD as a particular case. The probabilities of the laminar length, the average laminar lengths and the characteristic relations are determined with and without lower bound of the reinjection in agreement with numerical simulations. Finally, it is analyzed the noise effect in intermittency. A method to obtain the noisy RPD is developed extending the procedure used in the noiseless case. The analytical results show a good agreement with numerical simulations.
Resumo:
he nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu3N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10− 3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results.
Resumo:
The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
ObjectKineticMonteCarlo models allow for the study of the evolution of the damage created by irradiation to time scales that are comparable to those achieved experimentally. Therefore, the essential ObjectKineticMonteCarlo parameters can be validated through comparison with experiments. However, this validation is not trivial since a large number of parameters is necessary, including migration energies of point defects and their clusters, binding energies of point defects in clusters, as well as the interactionradii. This is particularly cumbersome when describing an alloy, such as the Fe–Cr system, which is of interest for fusion energy applications. In this work we describe an ObjectKineticMonteCarlo model for Fe–Cr alloys in the dilute limit. The parameters used in the model come either from density functional theory calculations or from empirical interatomic potentials. This model is used to reproduce isochronal resistivity recovery experiments of electron irradiateddiluteFe–Cr alloys performed by Abe and Kuramoto. The comparison between the calculated results and the experiments reveal that an important parameter is the capture radius between substitutionalCr and self-interstitialFe atoms. A parametric study is presented on the effect of the capture radius on the simulated recovery curves.
Resumo:
An intermediate-bandphotovoltaicmaterial, which has an isolated metallic band located between the top of the valence band and bottom of the conduction band of some semiconductors, has been proposed as third generation solar cell to be used in photovoltaic applications. Density functional theory calculations of Zn in CuGaS2:Ti have previously shown that, the intermediate-band position can be modulated in proportion of Zn insertion in such a way that increasing Zn concentration can lead to aband-gap reduction, and an adjustment of the intermediate-band position. This could be interesting in the formation of an intermediate-bandmaterial, that has the maximum efficiency theoretically predicted for the intermediate-band solar cell. In this work, the energetics of several reaction schemes that could lead to the decomposition of the modulated intermediate-bandphotovoltaicmaterial, CuGaS2:Ti:Zn, is studied in order to assess the thermodynamic stability of this material. Calculations of the total free energy and disorder entropy have been taken into account, to get the reaction energy and free energy of the compound decomposition, which is found to be thermodynamically favorable
Resumo:
The aim of this work is the theoretical study of the band alignment between the two components of a hybrid organic-inorganic solar-cell. The working organic molecules are metal tetra-sulphonated phthalocyanines (M-Pc) and the inorganic material is nano-porous ZnO growth in the 001 direction. The theoretical calculations are being made using the density functional theory (DFT) using a GGA functional with the SIESTA code, which projects electron wave functions and density onto a real space grid and uses as basis set a linear combination of numerical, finite-range localized atomic orbitals. We also used the DFT+U method included in the code that allows a semi-empirical inclusion of electronic correlations in the description of electronic spectra for systems such as zinc oxide.
Resumo:
This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.
Resumo:
The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.
Resumo:
Tropospheric scintillation can become a significant impairment in satellite communication systems, especially in those with low fade-margin. Moreover, fast amplitude fluctuations due to scintillation are even larger when rain is present on the propagation path. Few studies of scintillation during rain have been reported and the statistical characterization is still not totally clear. This paper presents experimental results on the relationship between scintillation and rain attenuation obtained from slant-path attenuation measurements at 50 GHz. The study is focused on the probability density function (PDF) of various scintillation parameters. It is shown that scintillation intensity, measured as the standard deviation of the amplitude fluctuations, increases with rain attenuation; in the range 1-10 dB this relationship can be expressed by power-law or linear equations. The PDFs of scintillation intensity conditioned to a given rain attenuation level are lognormal, while the overall long-term PDF is well fltted by a generalized extreme valué (GEV) distribution. The short-term PDFs of amplitude conditioned to a given intensity are normal, although skewness effects are observed for the strongest intensities. A procedure is given to derive numerically the overall PDF of scintillation amplitude using a combination of conditional PDFs and local statistics of rain attenuation.
Resumo:
Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.
Resumo:
Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75
Resumo:
Several authors have analysed the changes of the probability density function of the solar radiation with different time resolutions. Some others have approached to study the significance of these changes when produced energy calculations are attempted. We have undertaken different transformations to four Spanish databases in order to clarify the interrelationship between radiation models and produced energy estimations. Our contribution is straightforward: the complexity of a solar radiation model needed for yearly energy calculations, is very low. Twelve values of monthly mean of solar radiation are enough to estimate energy with errors below 3%. Time resolutions better than hourly samples do not improve significantly the result of energy estimations.
Resumo:
Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.
Resumo:
Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.