9 resultados para decision tree
em Universidad Politécnica de Madrid
Resumo:
The new European Standard EN 301 549 “Accessibility requirements suitable for public procurement of ICT products and services in Europe” is the response by CEN, CENELEC and ETSI to the European Commission’s Mandate 376. Today, ICT products and services are converging, and the boundaries between product categories are being constantly blurred. For that reason EN 301 549 has been drafted using a feature-based approach, instead of being based on product categories. The result is a standard that can be applied to any ICT product and service, by identifying applicable requirements depending on the features of the ICT. This demonstration presents ongoing work at the research group CETTICO of the Technical University of Madrid. CETTICO is developing a workgroup-based support tool where teams of people can annotate the result of performing a conformity assessment of a given ICT product or service according to the requirements of the EN. One of the functions of the tool is creating evaluation projects. During that task the user defines the features of the corresponding ICT product or service by answering questions presented by the tool. As a result of this process, the tool will create a list of applicable requirements and recommendations.
Resumo:
Data mining, and in particular decision trees have been used in different fields: engineering, medicine, banking and finance, etc., to analyze a target variable through decision variables. The following article examines the use of the decision trees algorithm as a tool in territorial logistic planning. The decision tree built has estimated population density indexes for territorial units with similar logistics characteristics in a concise and practical way.
Resumo:
Esta tesis doctoral se enmarca dentro de la computación con membranas. Se trata de un tipo de computación bio-inspirado, concretamente basado en las células de los organismos vivos, en las que se producen múltiples reacciones de forma simultánea. A partir de la estructura y funcionamiento de las células se han definido diferentes modelos formales, denominados P sistemas. Estos modelos no tratan de modelar el comportamiento biológico de una célula, sino que abstraen sus principios básicos con objeto de encontrar nuevos paradigmas computacionales. Los P sistemas son modelos de computación no deterministas y masivamente paralelos. De ahí el interés que en los últimos años estos modelos han suscitado para la resolución de problemas complejos. En muchos casos, consiguen resolver de forma teórica problemas NP-completos en tiempo polinómico o lineal. Por otra parte, cabe destacar también la aplicación que la computación con membranas ha tenido en la investigación de otros muchos campos, sobre todo relacionados con la biología. Actualmente, una gran cantidad de estos modelos de computación han sido estudiados desde el punto de vista teórico. Sin embargo, el modo en que pueden ser implementados es un reto de investigación todavía abierto. Existen varias líneas en este sentido, basadas en arquitecturas distribuidas o en hardware dedicado, que pretenden acercarse en lo posible a su carácter no determinista y masivamente paralelo, dentro de un contexto de viabilidad y eficiencia. En esta tesis doctoral se propone la realización de un análisis estático del P sistema, como vía para optimizar la ejecución del mismo en estas plataformas. Se pretende que la información recogida en tiempo de análisis sirva para configurar adecuadamente la plataforma donde se vaya a ejecutar posteriormente el P sistema, obteniendo como consecuencia una mejora en el rendimiento. Concretamente, en esta tesis se han tomado como referencia los P sistemas de transiciones para llevar a cabo el estudio de dicho análisis estático. De manera un poco más específica, el análisis estático propuesto en esta tesis persigue que cada membrana sea capaz de determinar sus reglas activas de forma eficiente en cada paso de evolución, es decir, aquellas reglas que reúnen las condiciones adecuadas para poder ser aplicadas. En esta línea, se afronta el problema de los estados de utilidad de una membrana dada, que en tiempo de ejecución permitirán a la misma conocer en todo momento las membranas con las que puede comunicarse, cuestión que determina las reglas que pueden aplicarse en cada momento. Además, el análisis estático propuesto en esta tesis se basa en otra serie de características del P sistema como la estructura de membranas, antecedentes de las reglas, consecuentes de las reglas o prioridades. Una vez obtenida toda esta información en tiempo de análisis, se estructura en forma de árbol de decisión, con objeto de que en tiempo de ejecución la membrana obtenga las reglas activas de la forma más eficiente posible. Por otra parte, en esta tesis se lleva a cabo un recorrido por un número importante de arquitecturas hardware y software que diferentes autores han propuesto para implementar P sistemas. Fundamentalmente, arquitecturas distribuidas, hardware dedicado basado en tarjetas FPGA y plataformas basadas en microcontroladores PIC. El objetivo es proponer soluciones que permitan implantar en dichas arquitecturas los resultados obtenidos del análisis estático (estados de utilidad y árboles de decisión para reglas activas). En líneas generales, se obtienen conclusiones positivas, en el sentido de que dichas optimizaciones se integran adecuadamente en las arquitecturas sin penalizaciones significativas. Summary Membrane computing is the focus of this doctoral thesis. It can be considered a bio-inspired computing type. Specifically, it is based on living cells, in which many reactions take place simultaneously. From cell structure and operation, many different formal models have been defined, named P systems. These models do not try to model the biological behavior of the cell, but they abstract the basic principles of the cell in order to find out new computational paradigms. P systems are non-deterministic and massively parallel computational models. This is why, they have aroused interest when dealing with complex problems nowadays. In many cases, they manage to solve in theory NP problems in polynomial or lineal time. On the other hand, it is important to note that membrane computing has been successfully applied in many researching areas, specially related to biology. Nowadays, lots of these computing models have been sufficiently characterized from a theoretical point of view. However, the way in which they can be implemented is a research challenge, that it is still open nowadays. There are some lines in this way, based on distributed architectures or dedicated hardware. All of them are trying to approach to its non-deterministic and parallel character as much as possible, taking into account viability and efficiency. In this doctoral thesis it is proposed carrying out a static analysis of the P system in order to optimize its performance in a computing platform. The general idea is that after data are collected in analysis time, they are used for getting a suitable configuration of the computing platform in which P system is going to be performed. As a consequence, the system throughput will improve. Specifically, this thesis has made use of Transition P systems for carrying out the study in static analysis. In particular, the static analysis proposed in this doctoral thesis tries to achieve that every membrane can efficiently determine its active rules in every evolution step. These rules are the ones that can be applied depending on the system configuration at each computational step. In this line, we are going to tackle the problem of the usefulness states for a membrane. This state will allow this membrane to know the set of membranes with which communication is possible at any time. This is a very important issue in determining the set of rules that can be applied. Moreover, static analysis in this thesis is carried out taking into account other properties such as membrane structure, rule antecedents, rule consequents and priorities among rules. After collecting all data in analysis time, they are arranged in a decision tree structure, enabling membranes to obtain the set of active rules as efficiently as possible in run-time system. On the other hand, in this doctoral thesis is going to carry out an overview of hardware and software architectures, proposed by different authors in order to implement P systems, such as distributed architectures, dedicated hardware based on PFGA, and computing platforms based on PIC microcontrollers. The aim of this overview is to propose solutions for implementing the results of the static analysis, that is, usefulness states and decision trees for active rules. In general, conclusions are satisfactory, because these optimizations can be properly integrated in most of the architectures without significant penalties.
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
Ubiquitous computing software needs to be autonomous so that essential decisions such as how to configure its particular execution are self-determined. Moreover, data mining serves an important role for ubiquitous computing by providing intelligence to several types of ubiquitous computing applications. Thus, automating ubiquitous data mining is also crucial. We focus on the problem of automatically configuring the execution of a ubiquitous data mining algorithm. In our solution, we generate configuration decisions in a resource aware and context aware manner since the algorithm executes in an environment in which the context often changes and computing resources are often severely limited. We propose to analyze the execution behavior of the data mining algorithm by mining its past executions. By doing so, we discover the effects of resource and context states as well as parameter settings on the data mining quality. We argue that a classification model is appropriate for predicting the behavior of an algorithm?s execution and we concentrate on decision tree classifier. We also define taxonomy on data mining quality so that tradeoff between prediction accuracy and classification specificity of each behavior model that classifies by a different abstraction of quality, is scored for model selection. Behavior model constituents and class label transformations are formally defined and experimental validation of the proposed approach is also performed.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. diabetes contributing to heart disease, increases the risks of developing kidney disease, blindness, nerve damage, and blood vessel damage. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important classification problem. Different techniques of artificial intelligence has been applied to diabetes problem. The purpose of this study is apply the artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining (DM) technique for the diabetes disease diagnosis. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with decision tree (DT), Bayesian classifier (BC) and other algorithms, recently proposed by other researchers, that were applied to the same database. The robustness of the algorithms are examined using classification accuracy, analysis of sensitivity and specificity, confusion matrix. The results obtained by AMMLP are superior to obtained by DT and BC.
Resumo:
Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.
Resumo:
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Resumo:
La presente tesis doctoral se enmarca dentro del concepto de la sistematización del conocimiento en arquitectura, más concretamente en el campo de las construcciones arquitectónicas y la toma de decisiones en la fase de proyecto de envolventes arquitectónicas multicapa. Por tanto, el objetivo principal es el establecimiento de las bases para una toma de decisiones informadas durante el proyecto de una envolvente multicapa con el fin de colaborar en su optimización. Del mismo modo que la historia de la arquitectura está relacionada con la historia de la innovación en construcción, la construcción está sujeta a cambios como respuesta a los fracasos anteriores. En base a esto, se identifica la toma de decisiones en la fase de proyecto como el estadio inicial para establecer un punto estratégico de reflexión y de control sobre los procesos constructivos. La presente investigación, conceptualmente, define los parámetros intervinientes en el proyecto de envolventes arquitectónicas multicapa a partir de una clasificación y sistematización de todos los componentes (elementos, unidades y sistemas constructivos) utilizados en las fachadas multicapa. Dicha sistematización se materializa en una hoja matriz de datos en la que, dentro de una organización a modo de árbol, se puede acceder a la consulta de cada componente y de su caracterización. Dicha matriz permite la incorporación futura de cualquier componente o sistema nuevo que aparezca en el mercado, relacionándolo con aquellos con los que comparta ubicación, tipo de material, etc. Con base en esa matriz de datos, se diseña la sistematización de la toma de decisiones en la fase de proyecto de una envolvente arquitectónica, en concreto, en el caso de una fachada. Operativamente, el resultado se presenta como una herramienta que permite al arquitecto o proyectista reflexionar y seleccionar el sistema constructivo más adecuado, al enfrentarse con las distintas decisiones o elecciones posibles. La herramienta se basa en las elecciones iniciales tomadas por el proyectista y se estructura, a continuación y sucesivamente, en distintas aproximaciones, criterios, subcriterios y posibilidades que responden a los distintos avances en la definición del sistema constructivo. Se proponen una serie de fichas operativas de comprobación que informan sobre el estadio de decisión y de definición de proyecto alcanzados en cada caso. Asimismo, el sistema permite la conexión con otros sistemas de revisión de proyectos para fomentar la reflexión sobre la normalización de los riesgos asociados tanto al proprio sistema como a su proceso constructivo y comportamiento futuros. La herramienta proporciona un sistema de ayuda para ser utilizado en el proceso de toma de decisiones en la fase de diseño de una fachada multicapa, minimizando la arbitrariedad y ofreciendo una cualificación previa a la cuantificación que supondrá la elaboración del detalle constructivo y de su medición en las sucesivas fases del proyecto. Al mismo tiempo, la sistematización de dicha toma de decisiones en la fase del proyecto puede constituirse como un sistema de comprobación en las diferentes fases del proceso de decisión proyectual y de definición de la envolvente de un edificio. ABSTRACT The central issue of this doctoral Thesis is founded on the framework of the concept of the systematization of knowledge in architecture, in particular, in respect of the field of building construction and the decision making in the design stage of multilayer building envelope projects. Therefore, the main objective is to establish the bases for knowledgeable decision making during a multilayer building envelope design process, in order to collaborate with its optimization. Just as the history of architecture is connected to the history of innovation in construction, construction itself is subject to changes as a response to previous failures. On this basis, the decisions made during the project design phase are identified as the initial state to establish an strategic point for reflection and control, referred to the constructive processes. Conceptually, this research defines the parameters involving the multilayer building envelope projects, on the basis of a classification and systematization for all the components (elements, constructive units and constructive systems) used in multilayer façades. The mentioned systematization is materialized into a data matrix sheet in which, following a tree‐like organization, the access to every single component and its characterization is possible. The above data matrix allows the future inclusion of any new component or system that may appear in the construction market. That new component or system can be put into a relationship with another, which it shares location, type of material,… with. Based on the data matrix, the systematization of the decision making process for a building envelope design stage is designed, more particularly in the case of a façade. Putting this into practice, it is represented as a tool which allows the architect or the designer, to reflect and to select the appropriate building system when facing the different elections or the different options. The tool is based on the initial elections taken by the designer. Then and successively, it is shaped on the form of different operative steps, criteria, sub‐criteria and possibilities which respond to a different progress in the definition of the building construction system. In order to inform about the stage of the decision and the definition reached by the project in every particular case, a range of operative sheets are proposed. Additionally, the system allows the connection with other reviewing methods for building projects. The aim of this last possibility is to encourage the reflection on standardization of the associated risks to the building system itself and its future performance. The tool provides a helping system to be used during the decision making process for a multilayer façade design. It minimizes the arbitrariness and offers a qualification previous to the quantification that will be done with the development of the construction details and their bill of quantities, that in subsequent project stages will be executed. At the same time, the systematization of the mentioned decision making during the design phase, can be found as a checking system in the different stages of the decision making design process and in the different stages of the building envelope definition.