3 resultados para decarbonization

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport climate change impacts have become a worldwide concern. The use of Intelligent Transport Systems (ITS) could contribute to a more effective use of resources in toll road networks. Management of toll plazas is central to the reduction of greenhouse gas (GHG) emissions, as it is there that bottlenecks and congestion occur. This study focuses on management strategies aimed at reducing climate change impacts of toll plazas by managing toll collection systems. These strategies are based on the use of different collection system technologies – Electronic Toll Collection (ETC) and Open Road Tolling (ORT) – and on queue management. The carbon footprint of various toll plazas is determined by a proposed integrated methodology which estimates the carbon dioxide (CO2) emissions of the different operational stages at toll plazas (deceleration, service time, acceleration, and queuing) for the different toll collection systems. To validate the methodology, two main-line toll plazas of a Spanish toll highway were evaluated. The findings reveal that the application of new technologies to toll collection systems is an effective management strategy from an environmental point of view. The case studies revealed that ORT systems lead to savings of up to 70% of CO2 emissions at toll plazas, while ETC systems save 20% comparing to the manual ones. Furthermore, queue management can offer a 16% emissions savings when queue time is reduced by 116 seconds. The integrated methodology provides an efficient environmental management tool for toll plazas. The use of new technologies is the future of the decarbonization of toll plazas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need of decarbonization of urban mobility is one of the main priorities for all countries to achieve greenhouse gas (GHG) emissions reduction targets. In general, the transport modes which have experienced the most growth in recent years tend to be the most polluting. Most efforts have been focused on the vehicle efficiency improvements and vehicle fleet renewal; nevertheless more emphasis should be placed on strategies related to the management of urban mobility and modal share. Research of individual travel which analyzes CO2 emissions and car and public transport share in daily mobility will enable better assessments of the potential of urban mobility measures introduced to limit GHG emissions produced by transport in cities. This paper explores the sustainability impacts of daily mobility in Spain using data from two National Travel Surveys (NTSs) (2000 and 2006) and includes a method by which to estimate the CO2 emissions associated with each journey and each surveyed individual. The results demonstrate that in the 2000 to 2006 period, there has been an increase in daily mobility which has led to a 17% increase in CO2 emissions. When separated by transport mode, cars prove to be the main contributor to that increase, followed by public transport. More focus should be directed toward modal shift strategies which not only take the number of journeys into account but also consider distance. The contributions of this paper have potential applications in the assessment of current and future urban transport policies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global demand for mobility is increasing and the environmental impact of transport has become an important issue in transportation network planning and decision-making, as well as in the operational management phase. Suitable methods are required to assess emissions and fuel consumption reduction strategies that seek to improve energy efficiency and furthering decarbonization. This study describes the development and application of an improved modeling framework – the HERA (Highway EneRgy Assessment) methodology – that enables to assess the energy and carbon footprint of different highways and traffic flow scenarios and their comparison. HERA incorporates an average speed consumption model adjusted with a correction factor which takes into account the road gradient. It provides a more comprehensive method for estimating the footprint of particular highway segments under specific traffic conditions. It includes the application of the methodology to the Spanish highway network to validate it. Finally, a case study shows the benefits from using this methodology and how to integrate the objective of carbon footprint reductions into highway design, operation and scenario comparison.