7 resultados para dS vacua in string theory
em Universidad Politécnica de Madrid
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
We treat graphoid and separoid structures within the mathematical framework of model theory, specially suited for representing and analysing axiomatic systems with multiple semantics. We represent the graphoid axiom set in model theory, and translate algebraic separoid structures to another axiom set over the same symbols as graphoids. This brings both structures to a common, sound theoretical ground where they can be fairly compared. Our contribution further serves as a bridge between the most recent developments in formal logic research, and the well-known graphoid applications in probabilistic graphical modelling.
Resumo:
The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established.
Resumo:
Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.
Resumo:
In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space H, also called atomic subspaces. These spaces are a generalization of the well-known shift- invariant subspaces in L2 (R); here the space L2 (R) is replaced by H, and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in Aa. Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.
Resumo:
This paper describes a corpus-based analysis of the humanizing metaphor and supports that constitutive metaphor in science and technology may be highly metaphorical and active. The study, grounded in Lakoff’s Theory of Metaphor and in Langacker’s relational networks, consists of two phases: firstly, Earth Science metaphorical terms were extracted from databases and dictionaries and, then, contextualized by means of the “Wordsmith” tool in a digitalized corpus created to establish their productivity. Secondly, the terms were classified to disclose the main conceptual metaphors underlying them; then, the mappings and the relational networks of the metaphor were described. Results confirm the systematicity and productivity of the metaphor in this field, show evidence that metaphoricity of scientific terms is gradable, and support that Earth Science metaphors are not only created in terms of their concrete salient properties and attributes, but also on abstract human anthropocentric projections.
Resumo:
We propose a new algorithm for the design of prediction structures with low delay and limited penalty in the rate-distortion performance for multiview video coding schemes. This algorithm constitutes one of the elements of a framework for the analysis and optimization of delay in multiview coding schemes that is based in graph theory. The objective of the algorithm is to find the best combination of prediction dependencies to prune from a multiview prediction structure, given a number of cuts. Taking into account the properties of the graph-based analysis of the encoding delay, the algorithm is able to find the best prediction dependencies to eliminate from an original prediction structure, while limiting the number of cut combinations to evaluate. We show that this algorithm obtains optimum results in the reduction of the encoding latency with a lower computational complexity than exhaustive search alternatives.