3 resultados para crop loss
em Universidad Politécnica de Madrid
Resumo:
Nitrate leaching (NL) is an important N loss process in irrigated agriculture that imposes a cost on the farmer and the environment. A meta-analysis of published experimental results from agricultural irrigated systems was conducted to identify those strategies that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended fertilizer rate. Replacing a fallow with a non-legume cover crop reduced NL by 50% while using a legume did not have any effect on NL. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.
Resumo:
Application of nitrogen (N) fertilizers in agricultural soils increases the risk of N loss to the atmosphere in the form of ammonia (NH3), nitrous oxide (N2O) and nitric oxide (NO)and the water bodies as nitrate (NO3-). The implementation of agricultural management practices can affect these losses. In Mediterranean irrigation systems, the greatest losses of NO3-through leaching occur within the irrigation and the intercropperiod. One way to abate these losses during the intercrop period is the use of cover crops that absorb part of the residual N from the root zone (Gabriel and Quemada, 2011). Moreover, during the following crop, these species could be applied as amendments to the soil, providing both C and N to the soil. This effect of cover and catch crops on decreasing the pool of N potentially lost has focused primarily on NO3-leaching. The aim of this work was to evaluate the effect of cover crops on N2O emission during the in tercrop period in a maize system and its subsequent incorporation into the soil in the following maize crop.
Resumo:
Melon is traditionally cultivated in fertigated farmlands in the center of Spain with high inputs of water and N fertilizer. Excess N can have a negative impact, from the economic point of view, since it can diminish the production and quality of the fruit, from the environmental point of view, since it is a very mobile element in the soil and can contaminate groundwater. From health point of view, nitrate can be accumulated in fruit pulp, and, in addition, groundwater is the fundamental supply source of human populations. Best management practices are particularly necessary in this region as many zones have been declared vulnerable to NO3- pollution (Directive 91/676/CEE) During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers under drip irrigation. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. The present study reviews the most common N efficiency indexes under the different management options with a view to maximizing yield and minimizing N loss.