7 resultados para cost functions
em Universidad Politécnica de Madrid
Resumo:
Several activities in service oriented computing, such as automatic composition, monitoring, and adaptation, can benefit from knowing properties of a given service composition before executing them. Among these properties we will focus on those related to execution cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order to attain more accuracy, we formulate execution costs / resource usage as functions on input data (or appropriate abstractions thereof) and show how these functions can be used to make better, more informed decisions when performing composition, adaptation, and proactive monitoring. We present an approach to, on one hand, synthesizing these functions in an automatic fashion from the definition of the different orchestrations taking part in a system and, on the other hand, to effectively using them to reduce the overall costs of non-trivial service-based systems featuring sensitivity to data and possibility of failure. We validate our approach by means of simulations of scenarios needing runtime selection of services and adaptation due to service failure. A number of rebinding strategies, including the use of cost functions, are compared.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
We present a generic analysis that infers both upper and lower bounds on the usage that a program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower- bound) cost functions for all procedures in the program. We also present an assertion language which is used to define both such resources and resource-related properties that the system can then check based on the results of the analysis. We have performed some experiments with some concrete resource-related properties such as execution steps, bits sent or received by an application, number of arithmetic operations performed, number of calls to a procedure, number of transactions, etc. presenting the resource usage functions inferred and the times taken to perform the analysis. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
El Análisis de Consumo de Recursos o Análisis de Coste trata de aproximar el coste de ejecutar un programa como una función dependiente de sus datos de entrada. A pesar de que existen trabajos previos a esta tesis doctoral que desarrollan potentes marcos para el análisis de coste de programas orientados a objetos, algunos aspectos avanzados, como la eficiencia, la precisión y la fiabilidad de los resultados, todavía deben ser estudiados en profundidad. Esta tesis aborda estos aspectos desde cuatro perspectivas diferentes: (1) Las estructuras de datos compartidas en la memoria del programa son una pesadilla para el análisis estático de programas. Trabajos recientes proponen una serie de condiciones de localidad para poder mantener de forma consistente información sobre los atributos de los objetos almacenados en memoria compartida, reemplazando éstos por variables locales no almacenadas en la memoria compartida. En esta tesis presentamos dos extensiones a estos trabajos: la primera es considerar, no sólo los accesos a los atributos, sino también los accesos a los elementos almacenados en arrays; la segunda se centra en los casos en los que las condiciones de localidad no se cumplen de forma incondicional, para lo cual, proponemos una técnica para encontrar las precondiciones necesarias para garantizar la consistencia de la información acerca de los datos almacenados en memoria. (2) El objetivo del análisis incremental es, dado un programa, los resultados de su análisis y una serie de cambios sobre el programa, obtener los nuevos resultados del análisis de la forma más eficiente posible, evitando reanalizar aquellos fragmentos de código que no se hayan visto afectados por los cambios. Los analizadores actuales todavía leen y analizan el programa completo de forma no incremental. Esta tesis presenta un análisis de coste incremental, que, dado un cambio en el programa, reconstruye la información sobre el coste del programa de todos los métodos afectados por el cambio de forma incremental. Para esto, proponemos (i) un algoritmo multi-dominio y de punto fijo que puede ser utilizado en todos los análisis globales necesarios para inferir el coste, y (ii) una novedosa forma de almacenar las expresiones de coste que nos permite reconstruir de forma incremental únicamente las funciones de coste de aquellos componentes afectados por el cambio. (3) Las garantías de coste obtenidas de forma automática por herramientas de análisis estático no son consideradas totalmente fiables salvo que la implementación de la herramienta o los resultados obtenidos sean verificados formalmente. Llevar a cabo el análisis de estas herramientas es una tarea titánica, ya que se trata de herramientas de gran tamaño y complejidad. En esta tesis nos centramos en el desarrollo de un marco formal para la verificación de las garantías de coste obtenidas por los analizadores en lugar de analizar las herramientas. Hemos implementado esta idea mediante la herramienta COSTA, un analizador de coste para programas Java y KeY, una herramienta de verificación de programas Java. De esta forma, COSTA genera las garantías de coste, mientras que KeY prueba la validez formal de los resultados obtenidos, generando de esta forma garantías de coste verificadas. (4) Hoy en día la concurrencia y los programas distribuidos son clave en el desarrollo de software. Los objetos concurrentes son un modelo de concurrencia asentado para el desarrollo de sistemas concurrentes. En este modelo, los objetos son las unidades de concurrencia y se comunican entre ellos mediante llamadas asíncronas a sus métodos. La distribución de las tareas sugiere que el análisis de coste debe inferir el coste de los diferentes componentes distribuidos por separado. En esta tesis proponemos un análisis de coste sensible a objetos que, utilizando los resultados obtenidos mediante un análisis de apunta-a, mantiene el coste de los diferentes componentes de forma independiente. Abstract Resource Analysis (a.k.a. Cost Analysis) tries to approximate the cost of executing programs as functions on their input data sizes and without actually having to execute the programs. While a powerful resource analysis framework on object-oriented programs existed before this thesis, advanced aspects to improve the efficiency, the accuracy and the reliability of the results of the analysis still need to be further investigated. This thesis tackles this need from the following four different perspectives. (1) Shared mutable data structures are the bane of formal reasoning and static analysis. Analyses which keep track of heap-allocated data are referred to as heap-sensitive. Recent work proposes locality conditions for soundly tracking field accesses by means of ghost non-heap allocated variables. In this thesis we present two extensions to this approach: the first extension is to consider arrays accesses (in addition to object fields), while the second extension focuses on handling cases for which the locality conditions cannot be proven unconditionally by finding aliasing preconditions under which tracking such heap locations is feasible. (2) The aim of incremental analysis is, given a program, its analysis results and a series of changes to the program, to obtain the new analysis results as efficiently as possible and, ideally, without having to (re-)analyze fragments of code that are not affected by the changes. During software development, programs are permanently modified but most analyzers still read and analyze the entire program at once in a non-incremental way. This thesis presents an incremental resource usage analysis which, after a change in the program is made, is able to reconstruct the upper-bounds of all affected methods in an incremental way. To this purpose, we propose (i) a multi-domain incremental fixed-point algorithm which can be used by all global analyses required to infer the cost, and (ii) a novel form of cost summaries that allows us to incrementally reconstruct only those components of cost functions affected by the change. (3) Resource guarantees that are automatically inferred by static analysis tools are generally not considered completely trustworthy, unless the tool implementation or the results are formally verified. Performing full-blown verification of such tools is a daunting task, since they are large and complex. In this thesis we focus on the development of a formal framework for the verification of the resource guarantees obtained by the analyzers, instead of verifying the tools. We have implemented this idea using COSTA, a state-of-the-art cost analyzer for Java programs and KeY, a state-of-the-art verification tool for Java source code. COSTA is able to derive upper-bounds of Java programs while KeY proves the validity of these bounds and provides a certificate. The main contribution of our work is to show that the proposed tools cooperation can be used for automatically producing verified resource guarantees. (4) Distribution and concurrency are today mainstream. Concurrent objects form a well established model for distributed concurrent systems. In this model, objects are the concurrency units that communicate via asynchronous method calls. Distribution suggests that analysis must infer the cost of the diverse distributed components separately. In this thesis we propose a novel object-sensitive cost analysis which, by using the results gathered by a points-to analysis, can keep the cost of the diverse distributed components separate.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.