45 resultados para cost estimation accuracy

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is the development of a building cost estimation model whose purpose is to quickly and precisely evaluate rebuilding costs for historic heritage buildings affected by catastrophic events. Specifically, this study will be applied to the monumental buildings owned by the Catholic Church that were affected by two earthquakes on May 11, 2011 in the town of Lorca. To estimate the initial total replacement cost new, calculation model will be applied which, on the one hand, will use two-dimensional metric exterior parameters and, on the other, three-dimensional interior cubic parameters. Based on the total of the analyzed buildings, and considering damage caused by the seismic event, the final reconstruction cost for the building units ruined by the earthquakes can be estimated. The proposed calculation model can also be applied to other emergency scenarios and situations for the quick estimation of construction costs necessary for rebuilding historic heritage buildings which have been affected by catastrophic events that deteriorate or ruin their structural or constructive configuration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction cost estimation systems in Spain are undeveloped and, hence, infrequently used by technicians and professionals in the building sector. However, estimation of an approximate real cost prior to the execution of the work is compulsory under current legal regulations (Technical Building Code). Therefore, the development of research projects on construction cost estimation models such as the one described and demonstrated in this talk is extremely interesting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo de la presente investigación es el desarrollo de un modelo de cálculo rápido, eficiente y preciso, para la estimación de los costes finales de construcción, en las fases preliminares del proyecto arquitectónico. Se trata de una herramienta a utilizar durante el proceso de elaboración de estudios previos, anteproyecto y proyecto básico, no siendo por tanto preciso para calcular el “predimensionado de costes” disponer de la total definición grafica y literal del proyecto. Se parte de la hipótesis de que en la aplicación práctica del modelo no se producirán desviaciones superiores al 10 % sobre el coste final de la obra proyectada. Para ello se formulan en el modelo de predimensionado cinco niveles de estimación de costes, de menor a mayor definición conceptual y gráfica del proyecto arquitectónico. Los cinco niveles de cálculo son: dos que toman como referencia los valores “exógenos” de venta de las viviendas (promoción inicial y promoción básica) y tres basados en cálculos de costes “endógenos” de la obra proyectada (estudios previos, anteproyecto y proyecto básico). El primer nivel de estimación de carácter “exógeno” (nivel .1), se calcula en base a la valoración de mercado de la promoción inmobiliaria y a su porcentaje de repercusión de suelo sobre el valor de venta de las viviendas. El quinto nivel de valoración, también de carácter “exógeno” (nivel .5), se calcula a partir del contraste entre el valor externo básico de mercado, los costes de construcción y los gastos de promoción estimados de la obra proyectada. Este contraste entre la “repercusión del coste de construcción” y el valor de mercado, supone una innovación respecto a los modelos de predimensionado de costes existentes, como proceso metodológico de verificación y validación extrínseca, de la precisión y validez de las estimaciones resultantes de la aplicación práctica del modelo, que se denomina Pcr.5n (Predimensionado costes de referencia con .5niveles de cálculo según fase de definición proyectual / ideación arquitectónica). Los otros tres niveles de predimensionado de costes de construcción “endógenos”, se estiman mediante cálculos analíticos internos por unidades de obra y cálculos sintéticos por sistemas constructivos y espacios funcionales, lo que se lleva a cabo en las etapas iniciales del proyecto correspondientes a estudios previos (nivel .2), anteproyecto (nivel .3) y proyecto básico (nivel .4). Estos cálculos teóricos internos son finalmente evaluados y validados mediante la aplicación práctica del modelo en obras de edificación residencial, de las que se conocen sus costes reales de liquidación final de obra. Según va evolucionando y se incrementa el nivel de definición y desarrollo del proyecto, desde los estudios previos hasta el proyecto básico, el cálculo se va perfeccionando en su nivel de eficiencia y precisión de la estimación, según la metodología aplicada: [aproximaciones sucesivas en intervalos finitos], siendo la hipótesis básica como anteriormente se ha avanzado, lograr una desviación máxima de una décima parte en el cálculo estimativo del predimensionado del coste real de obra. El cálculo del coste de ejecución material de la obra, se desarrolla en base a parámetros cúbicos funcionales “tridimensionales” del espacio proyectado y parámetros métricos constructivos “bidimensionales” de la envolvente exterior de cubierta/fachada y de la huella del edificio sobre el terreno. Los costes funcionales y constructivos se ponderan en cada fase del proceso de cálculo con sus parámetros “temáticos/específicos” de gestión (Pg), proyecto (Pp) y ejecución (Pe) de la concreta obra presupuestada, para finalmente estimar el coste de construcción por contrata, como resultado de incrementar al coste de ejecución material el porcentaje correspondiente al parámetro temático/especifico de la obra proyectada. El modelo de predimensionado de costes de construcción Pcr.5n, será una herramienta de gran interés y utilidad en el ámbito profesional, para la estimación del coste correspondiente al Proyecto Básico previsto en el marco técnico y legal de aplicación. Según el Anejo I del Código Técnico de la Edificación (CTE), es de obligado cumplimiento que el proyecto básico contenga una “Valoración aproximada de la ejecución material de la obra proyectada por capítulos”, es decir , que el Proyecto Básico ha de contener al menos un “presupuesto aproximado”, por capítulos, oficios ó tecnologías. El referido cálculo aproximado del presupuesto en el Proyecto Básico, necesariamente se ha de realizar mediante la técnica del predimensionado de costes, dado que en esta fase del proyecto arquitectónico aún no se dispone de cálculos de estructura, planos de acondicionamiento e instalaciones, ni de la resolución constructiva de la envolvente, por cuanto no se han desarrollado las especificaciones propias del posterior proyecto de ejecución. Esta estimación aproximada del coste de la obra, es sencilla de calcular mediante la aplicación práctica del modelo desarrollado, y ello tanto para estudiantes como para profesionales del sector de la construcción. Como se contiene y justifica en el presente trabajo, la aplicación práctica del modelo para el cálculo de costes en las fases preliminares del proyecto, es rápida y certera, siendo de sencilla aplicación tanto en vivienda unifamiliar (aisladas y pareadas), como en viviendas colectivas (bloques y manzanas). También, el modelo es de aplicación en el ámbito de la valoración inmobiliaria, tasaciones, análisis de viabilidad económica de promociones inmobiliarias, estimación de costes de obras terminadas y en general, cuando no se dispone del proyecto de ejecución y sea preciso calcular los costes de construcción de las obras proyectadas. Además, el modelo puede ser de aplicación para el chequeo de presupuestos calculados por el método analítico tradicional (estado de mediciones pormenorizadas por sus precios unitarios y costes descompuestos), tanto en obras de iniciativa privada como en obras promovidas por las Administraciones Públicas. Por último, como líneas abiertas a futuras investigaciones, el modelo de “predimensionado costes de referencia 5 niveles de cálculo”, se podría adaptar y aplicar para otros usos y tipologías diferentes a la residencial, como edificios de equipamientos y dotaciones públicas, valoración de edificios históricos, obras de urbanización interior y exterior de parcela, proyectos de parques y jardines, etc….. Estas lineas de investigación suponen trabajos paralelos al aquí desarrollado, y que a modo de avance parcial se recogen en las comunicaciones presentadas en los Congresos internacionales Scieconf/Junio 2013, Rics‐Cobra/Septiembre 2013 y en el IV Congreso nacional de patología en la edificación‐Ucam/Abril 2014. ABSTRACT The aim of this research is to develop a fast, efficient and accurate calculation model to estimate the final costs of construction, during the preliminary stages of the architectural project. It is a tool to be used during the preliminary study process, drafting and basic project. It is not therefore necessary to have the exact, graphic definition of the project in order to be able to calculate the cost‐scaling. It is assumed that no deviation 10% higher than the final cost of the projected work will occur during the implementation. To that purpose five levels of cost estimation are formulated in the scaling model, from a lower to a higher conceptual and graphic definition of the architectural project. The five calculation levels are: two that take as point of reference the ”exogenous” values of house sales (initial development and basic development), and three based on calculation of endogenous costs (preliminary study, drafting and basic project). The first ”exogenous” estimation level (level.1) is calculated over the market valuation of real estate development and the proportion the cost of land has over the value of the houses. The fifth level of valuation, also an ”exogenous” one (level.5) is calculated from the contrast between the basic external market value, the construction costs, and the estimated development costs of the projected work. This contrast between the ”repercussions of construction costs” and the market value is an innovation regarding the existing cost‐scaling models, as a methodological process of extrinsic verification and validation, of the accuracy and validity of the estimations obtained from the implementation of the model, which is called Pcr.5n (reference cost‐scaling with .5calculation levels according to the stage of project definition/ architectural conceptualization) The other three levels of “endogenous” construction cost‐scaling are estimated from internal analytical calculations by project units and synthetic calculations by construction systems and functional spaces. This is performed during the initial stages of the project corresponding to preliminary study process (level.2), drafting (level.3) and basic project (level.4). These theoretical internal calculations are finally evaluated and validated via implementation of the model in residential buildings, whose real costs on final payment of the works are known. As the level of definition and development of the project evolves, from preliminary study to basic project, the calculation improves in its level of efficiency and estimation accuracy, following the applied methodology: [successive approximations at finite intervals]. The basic hypothesis as above has been made, achieving a maximum deviation of one tenth, in the estimated calculation of the true cost of predimensioning work. The cost calculation for material execution of the works is developed from functional “three‐dimensional” cubic parameters for the planned space and constructive “two dimensional” metric parameters for the surface that envelopes around the facade and the building’s footprint on the plot. The functional and building costs are analyzed at every stage of the process of calculation with “thematic/specific” parameters of management (Pg), project (Pp) and execution (Pe) of the estimated work in question, and finally the cost of contractual construction is estimated, as a consequence of increasing the cost of material execution with the percentage pertaining to the thematic/specific parameter of the projected work. The construction cost‐scaling Pcr.5n model will be a useful tool of great interest in the professional field to estimate the cost of the Basic Project as prescribed in the technical and legal framework of application. According to the appendix of the Technical Building Code (CTE), it is compulsory that the basic project contains an “approximate valuation of the material execution of the work, projected by chapters”, that is, that the basic project must contain at least an “approximate estimate” by chapter, trade or technology. This approximate estimate in the Basic Project is to be performed through the cost‐scaling technique, given that structural calculations, reconditioning plans and definitive contruction details of the envelope are still not available at this stage of the architectural project, insofar as specifications pertaining to the later project have not yet been developed. This approximate estimate of the cost of the works is easy to calculate through the implementation of the given model, both for students and professionals of the building sector. As explained and justified in this work, the implementation of the model for cost‐scaling during the preliminary stage is fast and accurate, as well as easy to apply both in single‐family houses (detached and semi‐detached) and collective housing (blocks). The model can also be applied in the field of the real‐estate valuation, official appraisal, analysis of the economic viability of real estate developments, estimate of the cost of finished projects and, generally, when an implementation project is not available and it is necessary to calculate the building costs of the projected works. The model can also be applied to check estimates calculated by the traditional analytical method (state of measurements broken down into price per unit cost details), both in private works and those promoted by Public Authorities. Finally, as potential lines for future research, the “five levels of calculation cost‐scaling model”, could be adapted and applied to purposes and typologies other than the residential one, such as service buildings and public facilities, valuation of historical buildings, interior and exterior development works, park and garden planning, etc… These lines of investigation are parallel to this one and, by way of a preview, can be found in the dissertations given in the International Congresses Scieconf/June 2013, Rics‐Cobra/September 2013 and in the IV Congress on building pathology ‐Ucam/April 2014.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente proyecto tiene como objetivo la creación de un controlador MIDI económico que haga uso de la tecnología actual, y partiendo de la idea del instrumento clásico, el Theremin, desarrollado por Lev Serguéievich Termen. Para ello se ha dividido el proyecto en dos principales bloques, el primero, hardware y el segundo, software. En la parte del hardware, se explica cual ha sido la razón de la utilización del microprocesador Arduino Uno, sus características técnicas y el uso de sensores de ultrasonido, ya que proporcionan la característica de poder interactuar con el controlador a través de gestos con las manos, al igual que un Theremin clásico. Se explica el montaje de los dispositivos que conforman el controlador, así como la mejora realizada, con la utilización de 4 de estos sensores, para dar más capacidades de interactuación con el controlador MIDI. También se ve en ese apartado, como se programa la tarjeta de Arduino, para que se encargue de realizar medidas con los sensores y enviarlas por el puerto serial USB. En el apartado del software se da una introducción al entorno de programación Max/MSP. Se ve el plug in desarrollado con este lenguaje, para poder comunicar el controlador MIDI con un software de audio profesional (Ableton Live) y se explica con detalle los bloques que conforman el plug in de control de sensores y como es transformada la información que entrega el microprocesador Arduino por el puerto USB, en datos MIDI. También, se da una explicación sobre el manejo correcto del controlador a la hora de mover las manos sobre los sensores y de donde situar el instrumento para que no se produzcan problemas de interferencias con las señales que envían los ultrasonidos. Además, se proporciona un presupuesto del coste de los materiales, y otro del coste del desarrollo realizado por el ingeniero. ABSTRACT The aim of this Project is the creation of an economical MIDI controller that uses nowadays technology and that is based on the idea of the Theremin, a classical instrument conceived by Lev Serguéievich Termen. In order to accomplish this, the project has been divided into two sections: hardware and software. The hardware section explains why the microprocessor Arduino Uno has been chosen, sets out its technical specifications and the use of ultrasonic sensors. These sensors enable the user to interact with the controller through hand gestures like the Theremin. The assembly of the devices is exposed as well as the improvements made with the use of four of these sensors to offer more interactive capabilities with the MIDI controller. The Arduino singleboard programming that performs the measurements with the sensors and sends these measurements through the USB serial port is also explained here. The software section introduces Max/MSP programming environment as well as the plug in developed with this language that connects the MIDI controller with professional audio software (Ableton Live). The blocks that build the sensor controller plug in are explained in detail along with the way the Arduino delivers the information through the USB port into MIDI data. In addition, an explanation of the correct handling of the MIDI controller is given focusing on how the user should move his hands above the sensors and where to place the instrument to avoid interference problems with the signals sent. Also, a cost estimation of both materials and engineering is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of the platform in order to determine the valúes of certain parameters for a given platform. These parameters calíbrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatly between the motor and drive-side of the cable. Since in the considered case only drive-side data is available, it is therefore necessary to estimate the motor-side signals. Modelling the entire cable and motor system in an Extended Kalman Filter is too computationally intensive for standard embedded real-time platforms. It is, in consequence, proposed to divide the problem into an Extended Kalman Filter, based only on the motor model, and separated motor-side signal estimators, the combination of which is less demanding computationally. The efectiveness of this approach is shown in simulation. Then its validity is experimentally demonstrated via implementation in a DSP based drive. A testbench to test its performance when driving an axis of a Large Hadron Collider collimator is presented along with the results achieved. It is shown that the proposed method is capable of achieving position and load torque estimates which allow step loss to be detected and mechanical degradation to be evaluated without the need for physical sensors. These estimation algorithms often require a precise model of the motor, but the standard electrical model used for hybrid stepper motors is limited when currents, which are high enough to produce saturation of the magnetic circuit, are present. New model extensions are proposed in order to have a more precise model of the motor independently of the current level, whilst maintaining a low computational cost. It is shown that a significant improvement in the model It is achieved with these extensions, and their computational performance is compared to study the cost of model improvement versus computation cost. The applicability of the proposed model extensions is demonstrated via their use in an Extended Kalman Filter running in real-time for closed-loop current control and mechanical state estimation. An additional problem arises from the use of stepper motors. The mechanics of the collimators can wear due to the abrupt motion and torque profiles that are applied by them when used in the standard way, i.e. stepping in open-loop. Closed-loop position control, more specifically Field Oriented Control, would allow smoother profiles, more respectful to the mechanics, to be applied but requires position feedback. As mentioned already, the use of sensors in radioactive environments is very limited for reliability reasons. Sensorless control is a known option but when the speed is very low or zero, as is the case most of the time for the motors used in the LHC collimator, the loss of observability prevents its use. In order to allow the use of position sensors without reducing the long term reliability of the whole system, the possibility to switch from closed to open loop is proposed and validated, allowing the use of closed-loop control when the position sensors function correctly and open-loop when there is a sensor failure. A different approach to deal with the switched drive working with long cables is also presented. Switched mode stepper motor drives tend to have poor performance or even fail completely when the motor is fed through a long cable due to the high oscillations in the drive-side current. The design of a stepper motor output fillter which solves this problem is thus proposed. A two stage filter, one devoted to dealing with the diferential mode and the other with the common mode, is designed and validated experimentally. With this ?lter the drive performance is greatly improved, achieving a positioning repeatability even better than with the drive working without a long cable, the radiated emissions are reduced and the overvoltages at the motor terminals are eliminated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a ? -estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier?Stokes equations. It is shown that the two quasi- a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activity recognition is an active research field nowadays, as it enables the development of highly adaptive applications, e.g. in the field of personal health. In this paper, a light high-level fusion algorithm to detect the activity that an individual is performing is presented. The algorithm relies on data gathered from accelerometers placed on different parts of the body, and on biometric sensors. Inertial sensors allow detecting activity by analyzing signal features such as amplitude or peaks. In addition, there is a relationship between the activity intensity and biometric response, which can be considered together with acceleration data to improve the accuracy of activity detection. The proposed algorithm is designed to work with minimum computational cost, being ready to run in a mobile device as part of a context-aware application. In order to enable different user scenarios, the algorithm offers best-effort activity estimation: its quality of estimation depends on the position and number of the available inertial sensors, and also on the presence of biometric information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.