2 resultados para correlated information

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cascade is an information reconciliation protocol proposed in the context of secret key agreement in quantum cryptography. This protocol allows removing discrepancies in two partially correlated sequences that belong to distant parties, connected through a public noiseless channel. It is highly interactive, thus requiring a large number of channel communications between the parties to proceed and, although its efficiency is not optimal, it has become the de-facto standard for practical implementations of information reconciliation in quantum key distribution. The aim of this work is to analyze the performance of Cascade, to discuss its strengths, weaknesses and optimization possibilities, comparing with some of the modified versions that have been proposed in the literature. When looking at all design trade-offs, a new view emerges that allows to put forward a number of guidelines and propose near optimal parameters for the practical implementation of Cascade improving performance significantly in comparison with all previous proposals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secret-key agreement, a well-known problem in cryptography, allows two parties holding correlated sequences to agree on a secret key communicating over a public channel. It is usually divided into three different procedures: advantage distillation, information reconciliation and privacy amplification. The efficiency of each one of these procedures is needed if a positive key rate is to be attained from the legitimate parties? correlated sequences. Quantum key distribution (QKD) allows the two parties to obtain correlated sequences, provided that they have access to an authenticated channel. The new generation of QKD devices is able to work at higher speeds and in noisier or more absorbing environments. This exposes the weaknesses of current information reconciliation protocols, a key component to their performance. Here we present a new protocol based in low-density parity-check (LDPC) codes that presents the advantages of low interactivity, rate adaptability and high efficiency,characteristics that make it highly suitable for next generation QKD devices.