4 resultados para corrected score
em Universidad Politécnica de Madrid
Resumo:
The constellation of adverse cardiovascular disease (CVD) and metabolic risk factors, including elevated abdominal obesity, blood pressure (BP), glucose, and triglycerides (TG) and lowered high-density lipoprotein-cholesterol (HDL-C), has been termed the metabolic syndrome (MetSyn) [1]. A number of different definitions have been developed by the World Health Organization (WHO) [2], the National Cholesterol Education Program Adult Treatment Panel III (ATP III) [3], the European Group for the Study of Insulin Resistance (EGIR) [4] and, most recently, the International Diabetes Federation (IDF) [5]. Since there is no universal definition of the Metabolic Syndrome, several authors have derived different risk scores to represent the clustering of its components [6-11].
Resumo:
This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents.
Resumo:
Performing three-dimensional pin-by-pin full core calculations based on an improved solution of the multi-group diffusion equation is an affordable option nowadays to compute accurate local safety parameters for light water reactors. Since a transport approximation is solved, appropriate correction factors, such as interface discontinuity factors, are required to nearly reproduce the fully heterogeneous transport solution. Calculating exact pin-by-pin discontinuity factors requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration; however, inaccurate correction factors are one major source of error in core analysis when using multi-group diffusion theory. An alternative to generate accurate pin-by-pin interface discontinuity factors is to build a functional-fitting that allows incorporating the environment dependence in the computed values. This paper suggests a methodology to consider the neighborhood effect based on the Analytic Coarse-Mesh Finite Difference method for the multi-group diffusion equation. It has been applied to both definitions of interface discontinuity factors, the one based on the Generalized Equivalence Theory and the one based on Black-Box Homogenization, and for different few energy groups structures. Conclusions are drawn over the optimal functional-fitting and demonstrative results are obtained with the multi-group pin-by-pin diffusion code COBAYA3 for representative PWR configurations.
Resumo:
The aim of the present study was to assess the effects of game timeouts on basketball teams? offensive and defensive performances according to momentary differences in score and game period. The sample consisted of 144 timeouts registered during 18 basketball games randomly selected from the 2007 European Basketball Championship (Spain). For each timeout, five ball possessions were registered before (n?493) and after the timeout (n?475). The offensive and defensive efficiencies were registered across the first 35 min and last 5 min of games. A k-means cluster analysis classified the timeouts according to momentary score status as follows: losing ( ?10 to ?3 points), balanced ( ?2 to 3 points), and winning (4 to 10 points). Repeated-measures analysis of variance identified statistically significant main effects between pre and post timeout offensive and defensive values. Chi-square analysis of game period identified a higher percentage of timeouts called during the last 5 min of a game compared with the first 35 min (64.999.1% vs. 35.1910.3%; x ?5.4, PB0.05). Results showed higher post timeout offensive and defensive performances. No other effect or interaction was found for defensive performances. Offensive performances were better in the last 5 min of games, with the least differences when in balanced situations and greater differences when in winning situations. Results also showed one interaction between timeouts and momentary differences in score, with increased values when in losing and balanced situations but decreased values when in winning situations. Overall, the results suggest that coaches should examine offensive and defensive performances according to game period and differences in score when considering whether to call a timeout.