4 resultados para controlling mass fuzzy

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the work described in this paper is to develop a visual line guided system for being used on-board an Autonomous Guided Vehicle (AGV) commercial car, controlling the steering and using just the visual information of a line painted below the car. In order to implement the control of the vehicle, a Fuzzy Logic controller has been implemented, that has to be robust against curvature changes and velocity changes. The only input information for the controller is the visual distance from the image center captured by a camera pointing downwards to the guiding line on the road, at a commercial frequency of 30Hz. The good performance of the controller has successfully been demonstrated in a real environment at urban velocities. The presented results demonstrate the capability of the Fuzzy controller to follow a circuit in urban environments without previous information about the path or any other information from additional sensors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four longitudinal control techniques are compared: a classical Proportional-Integral (PI) control; an advanced technique-called the i-PI-that adds an intelligent component to the PI; a fuzzy controller based on human experience; and an adaptive-network-based fuzzy inference system. The controllers were designed to tackle one of the challenging topics as yet unsolved by the automotive sector: managing autonomously a gasoline-propelled vehicle at very low speeds. The dynamics involved are highly nonlinear and constitute an excellent test-bed for newly designed controllers. A Citroën C3 Pluriel car was modified to permit autonomous action on the accelerator and the brake pedals-i.e., longitudinal control. The controllers were tested in two stages. First, the vehicle was modeled to check the controllers' feasibility. Second, the controllers were then implemented in the Citroën, and their behavior under the same conditions on an identical real circuit was compared.