14 resultados para concrete buildings

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threat of impact or explosive loads is regrettably a scenario to be taken into account in the design of lifeline or critical civilian buildings. These are often made of concrete and not specifically designed for military threats. Numerical simulation of such cases may be undertaken with the aid of state of the art explicit dynamic codes, however several difficult challenges are inherent to such models: the material modeling for the concrete anisotropic failure, consideration of reinforcement bars and important structural details, adequate modeling of pressure waves from explosions in complex geometries, and efficient solution to models of complete buildings which can realistically assess failure modes. In this work we employ LS-Dyna for calculation, with Lagrangian finite elements and explicit time integration. Reinforced concrete may be represented in a fairly accurate fashion with recent models such as CSCM model [1] and segregated rebars constrained within the continuum mesh. However, such models cannot be realistically employed for complete models of large buildings, due to limitations of time and computer resources. The use of structural beam and shell elements for this purpose would be the obvious solution, with much lower computational cost. However, this modeling requires careful calibration in order to reproduce adequately the highly nonlinear response of structural concrete members, including bending with and without compression, cracking or plastic crushing, plastic deformation of reinforcement, erosion of vanished elements etc. The main objective of this work is to provide a strategy for modeling such scenarios based on structural elements, using available material models for structural elements [2] and techniques to include the reinforcement in a realistic way. These models are calibrated against fully three-dimensional models and shown to be accurate enough. At the same time they provide the basis for realistic simulation of impact and explosion on full-scale buildings

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudio aborda la recopilación de nuevas tendencias del diseño sismorresistente, enfocándose en la técnica del aislamiento de base, por ser la más efectiva, difundida y utilizada; y el análisis de las ventajas que puede tener una edificación que aplica dicha técnica, desde el punto de vista estructural y económico. Se elige la tipología más frecuente o común de edificios de hormigón armado propensos a ser aislados, que en este caso es un hospital, cuyo modelo empotrado se somete a varias normas sismorresistentes comparando principalmente fuerzas de cortante basal, y considerando la interacción suelo-estructura; para asistir a este cálculo se desarrolla un programa de elementos viga de 6 gdl por nodo en código Matlab. El modelo aislado incluye el análisis de tres combinaciones de tipos de aisladores HDR, LPR y FPS, alternando modelos lineales simplificados de 1 y 3 gdl por piso, evaluando diferencias de respuestas de la estructura, y procediendo a la elección de la combinación que de resultados más convenientes; para la modelación no lineal de cada sistema de aislamiento se utiliza el método explícito de diferencias centrales. Finalmente, se realiza un análisis comparativo de daños esperados en el caso de la ocurrencia del sismo de diseño, utilizando el método rápido y tomando como referencia el desplazamiento espectral del último piso; llegando a dar conclusiones y recomendaciones para el uso de sistemas de aislamiento. This study addresses the collection of new seismic design trends, focusing on base isolation technique, as the most effective and widely used, and the analysis of the advantages in buildings that apply this technique, from the structurally and economically point of view. Choosing the most common types of concrete buildings likely to be isolated, which in this case is a hospital, the fix model is subjected to various seismic codes mainly comparing base shear forces, and considering the soil-structure interaction; for this calculation attend a program of bars 6 dof per node is made in Matlab code. The isolated model includes analysis of three types of isolators combinations HDR, LPR and FPS, alternating simplified linear model of 1 and 3 dof per floor, evaluating differences in the response of the structure, and proceeding to the choice of the combination of results more convenient; for modeling nonlinear each insulation system, the explicit central difference method is used. Finally, a comparative analysis of expected damage in the case of the design earthquake, using a fast combined method and by reference to the spectral displacement of the top floor; reaching conclusions and give recommendations for the use of insulation systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A damage scenario modelling is developed and compared with the damage distribution observed after the 2011 Lorca earthquake. The strong ground motion models considered include five modern ground motion prediction equations (GMPEs) amply used worldwide. Capacity and fragility curves from the Risk-UE project are utilized to model building vulnerability and expected damage. Damage estimates resulting from different combinations of GMPE and capacity/fragility curves are compared with the actual damage scenario, establishing the combination that best explains the observed damage distribution. In addition, some recommendations are proposed, including correction factors in fragility curves in order to reproduce in a better way the observed damage in masonry and reinforce concrete buildings. The lessons learned would contribute to improve the simulation of expected damages due to future earthquakes in Lorca or other regions in Spain with similar characteristics regarding attenuation and vulnerability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La frecuencia con la que se producen explosiones sobre edificios, ya sean accidentales o intencionadas, es reducida, pero sus efectos pueden ser catastróficos. Es deseable poder predecir de forma suficientemente precisa las consecuencias de estas acciones dinámicas sobre edificaciones civiles, entre las cuales las estructuras reticuladas de hormigón armado son una tipología habitual. En esta tesis doctoral se exploran distintas opciones prácticas para el modelado y cálculo numérico por ordenador de estructuras de hormigón armado sometidas a explosiones. Se emplean modelos numéricos de elementos finitos con integración explícita en el tiempo, que demuestran su capacidad efectiva para simular los fenómenos físicos y estructurales de dinámica rápida y altamente no lineales que suceden, pudiendo predecir los daños ocasionados tanto por la propia explosión como por el posible colapso progresivo de la estructura. El trabajo se ha llevado a cabo empleando el código comercial de elementos finitos LS-DYNA (Hallquist, 2006), desarrollando en el mismo distintos tipos de modelos de cálculo que se pueden clasificar en dos tipos principales: 1) modelos basados en elementos finitos de continuo, en los que se discretiza directamente el medio continuo mediante grados de libertad nodales de desplazamientos; 2) modelos basados en elementos finitos estructurales, mediante vigas y láminas, que incluyen hipótesis cinemáticas para elementos lineales o superficiales. Estos modelos se desarrollan y discuten a varios niveles distintos: 1) a nivel del comportamiento de los materiales, 2) a nivel de la respuesta de elementos estructurales tales como columnas, vigas o losas, y 3) a nivel de la respuesta de edificios completos o de partes significativas de los mismos. Se desarrollan modelos de elementos finitos de continuo 3D muy detallados que modelizan el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con un modelo constitutivo del hormigón CSCM (Murray et al., 2007), que tiene un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura. El acero se representa con un modelo constitutivo elastoplástico bilineal con rotura. Se modeliza la geometría precisa del hormigón mediante elementos finitos de continuo 3D y cada una de las barras de armado mediante elementos finitos tipo viga, con su posición exacta dentro de la masa de hormigón. La malla del modelo se construye mediante la superposición de los elementos de continuo de hormigón y los elementos tipo viga de las armaduras segregadas, que son obligadas a seguir la deformación del sólido en cada punto mediante un algoritmo de penalización, simulando así el comportamiento del hormigón armado. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF de continuo. Con estos modelos de EF de continuo se analiza la respuesta estructural de elementos constructivos (columnas, losas y pórticos) frente a acciones explosivas. Asimismo se han comparado con resultados experimentales, de ensayos sobre vigas y losas con distintas cargas de explosivo, verificándose una coincidencia aceptable y permitiendo una calibración de los parámetros de cálculo. Sin embargo estos modelos tan detallados no son recomendables para analizar edificios completos, ya que el elevado número de elementos finitos que serían necesarios eleva su coste computacional hasta hacerlos inviables para los recursos de cálculo actuales. Adicionalmente, se desarrollan modelos de elementos finitos estructurales (vigas y láminas) que, con un coste computacional reducido, son capaces de reproducir el comportamiento global de la estructura con una precisión similar. Se modelizan igualmente el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con el modelo constitutivo del hormigón EC2 (Hallquist et al., 2013), que también presenta un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura, y se usa en elementos finitos tipo lámina. El acero se representa de nuevo con un modelo constitutivo elastoplástico bilineal con rotura, usando elementos finitos tipo viga. Se modeliza una geometría equivalente del hormigón y del armado, y se tiene en cuenta la posición relativa del acero dentro de la masa de hormigón. Las mallas de ambos se unen mediante nodos comunes, produciendo una respuesta conjunta. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF estructurales. Con estos modelos de EF estructurales se simulan los mismos elementos constructivos que con los modelos de EF de continuo, y comparando sus respuestas estructurales frente a explosión se realiza la calibración de los primeros, de forma que se obtiene un comportamiento estructural similar con un coste computacional reducido. Se comprueba que estos mismos modelos, tanto los modelos de EF de continuo como los modelos de EF estructurales, son precisos también para el análisis del fenómeno de colapso progresivo en una estructura, y que se pueden utilizar para el estudio simultáneo de los daños de una explosión y el posterior colapso. Para ello se incluyen formulaciones que permiten considerar las fuerzas debidas al peso propio, sobrecargas y los contactos de unas partes de la estructura sobre otras. Se validan ambos modelos con un ensayo a escala real en el que un módulo con seis columnas y dos plantas colapsa al eliminar una de sus columnas. El coste computacional del modelo de EF de continuo para la simulación de este ensayo es mucho mayor que el del modelo de EF estructurales, lo cual hace inviable su aplicación en edificios completos, mientras que el modelo de EF estructurales presenta una respuesta global suficientemente precisa con un coste asumible. Por último se utilizan los modelos de EF estructurales para analizar explosiones sobre edificios de varias plantas, y se simulan dos escenarios con cargas explosivas para un edificio completo, con un coste computacional moderado. The frequency of explosions on buildings whether they are intended or accidental is small, but they can have catastrophic effects. Being able to predict in a accurate enough manner the consequences of these dynamic actions on civil buildings, among which frame-type reinforced concrete buildings are a frequent typology is desirable. In this doctoral thesis different practical options for the modeling and computer assisted numerical calculation of reinforced concrete structures submitted to explosions are explored. Numerical finite elements models with explicit time-based integration are employed, demonstrating their effective capacity in the simulation of the occurring fast dynamic and highly nonlinear physical and structural phenomena, allowing to predict the damage caused by the explosion itself as well as by the possible progressive collapse of the structure. The work has been carried out with the commercial finite elements code LS-DYNA (Hallquist, 2006), developing several types of calculation model classified in two main types: 1) Models based in continuum finite elements in which the continuous medium is discretized directly by means of nodal displacement degrees of freedom; 2) Models based on structural finite elements, with beams and shells, including kinematic hypothesis for linear and superficial elements. These models are developed and discussed at different levels: 1) material behaviour, 2) response of structural elements such as columns, beams and slabs, and 3) response of complete buildings or significative parts of them. Very detailed 3D continuum finite element models are developed, modeling mass concrete and reinforcement steel in a segregated manner. Concrete is represented with a constitutive concrete model CSCM (Murray et al., 2007), that has an inelastic behaviour, with different tension and compression response, hardening, cracking and compression damage and failure. The steel is represented with an elastic-plastic bilinear model with failure. The actual geometry of the concrete is modeled with 3D continuum finite elements and every and each of the reinforcing bars with beam-type finite elements, with their exact position in the concrete mass. The mesh of the model is generated by the superposition of the concrete continuum elements and the beam-type elements of the segregated reinforcement, which are made to follow the deformation of the solid in each point by means of a penalty algorithm, reproducing the behaviour of reinforced concrete. In this work these models will be called continuum FE models as a simplification. With these continuum FE models the response of construction elements (columns, slabs and frames) under explosive actions are analysed. They have also been compared with experimental results of tests on beams and slabs with various explosive charges, verifying an acceptable coincidence and allowing a calibration of the calculation parameters. These detailed models are however not advised for the analysis of complete buildings, as the high number of finite elements necessary raises its computational cost, making them unreliable for the current calculation resources. In addition to that, structural finite elements (beams and shells) models are developed, which, while having a reduced computational cost, are able to reproduce the global behaviour of the structure with a similar accuracy. Mass concrete and reinforcing steel are also modeled segregated. Concrete is represented with the concrete constitutive model EC2 (Hallquist et al., 2013), which also presents an inelastic behaviour, with a different tension and compression response, hardening, compression and cracking damage and failure, and is used in shell-type finite elements. Steel is represented once again with an elastic-plastic bilineal with failure constitutive model, using beam-type finite elements. An equivalent geometry of the concrete and the steel is modeled, considering the relative position of the steel inside the concrete mass. The meshes of both sets of elements are bound with common nodes, therefore producing a joint response. These models will be called structural FE models as a simplification. With these structural FE models the same construction elements as with the continuum FE models are simulated, and by comparing their response under explosive actions a calibration of the former is carried out, resulting in a similar response with a reduced computational cost. It is verified that both the continuum FE models and the structural FE models are also accurate for the analysis of the phenomenon of progressive collapse of a structure, and that they can be employed for the simultaneous study of an explosion damage and the resulting collapse. Both models are validated with an experimental full-scale test in which a six column, two floors module collapses after the removal of one of its columns. The computational cost of the continuum FE model for the simulation of this test is a lot higher than that of the structural FE model, making it non-viable for its application to full buildings, while the structural FE model presents a global response accurate enough with an admissible cost. Finally, structural FE models are used to analyze explosions on several story buildings, and two scenarios are simulated with explosive charges for a full building, with a moderate computational cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"No son necesarios imponentes edificios para dar una buena educación a los niños, mucho menos en zonas de clima suave. En el pasado Filósofos y Santos acostumbraban a sentarse con sus discípulos a la sombra de un árbol, transmitiéndoles su sabiduría sin necesidad de edificaciones de hormigón armado. Pero eran grandes hombres y grandes espíritus que sabían aprovechar el universo entero como material didáctico junto a los simples recursos de su inteligencia y su fantasía". Esta tesis nace con la intención de profundizar en la investigación de los mecanismos arquitectónicos que hicieron posible en un determinado tipo de escuelas la relación entre arquitectura y naturaleza, ya se entienda ésta como paisaje natural o como paisaje artificial creado ex novo. Si desde los tiempos de Lao Tse no había sido superada su definición de Arquitectura: “Arquitectura no son cuatro paredes y un tejado, arquitectura es el ordenamiento de los espacios y el espíritu que se genera dentro”; en realidad dicha definición adolecía de una gran carencia, pues nada decía del “espacio que queda fuera”. Así lo puso de manifiesto D. Rafael de La Hoz Arderius en su discurso de ingreso a la Real Academia de San Fernando5. Hubo que esperar al inicio del siglo XX para que la Arquitectura occidental se centrara de lleno en desmaterializar el límite entre el espacio construido y el “sitio” en el que se inserta, convirtiendo éste en “lugar” habitado. El “dentro” y el “fuera” dejan de entenderse como dos realidades antagónicas para dejar paso a un espacio continuo articulado a través de fructíferas situaciones intermedias. Sin embargo, poco se ha estudiado sobre una tipología arquitectónica : la escuela al aire libre, que fue crucial en la génesis tanto de los espacios educativos, como en la conformación del espacio Moderno así entendido. Éste es por tanto el objeto de la presente Tesis, desde una doble vertiente: por un lado desde la investigación de la evolución de esta tipología en general, y más detenidamente de un caso concreto, el colegio de las Teresianas en Alicante de Rafael de La Hoz Arderius y Gerardo Olivares James. La evolución de la escuela al aire libre se aborda a través de una selección de casos de estudio que ilustran que la regeneración social que pretendía acometerse no podía limitarse sólo a los aspectos higiénicos que centraron su primera etapa, sino que era necesario también reforzar el espíritu comunitario del niño como futuro ciudadano. Por otro lado el Colegio de las Teresianas en Alicante (1964) de Rafael de La Hoz Arderius y Gerardo Olivares James se ha elegido como caso de estudio específico. Este proyecto, siendo uno de los más desconocidos de sus autores, supone la culminación de sus investigaciones en torno a la escuela al aire libre8. Rafael de La Hoz, en línea con los postulados humanistas del Realismo Biológico de Richard Neutra, advertía de la imposibilidad de abordar la ordenación del espacio si desconocemos el proceso perceptivo del ser humano, destinatario de la Arquitectura. Esta dificultad es aún mayor si cabe cuando el destinatario no es el ser humano adulto sino el niño, dada su distinta percepción del binomio “espacio-tiempo”. En este sentido el colegio de las Teresianas en Alicante es además un ejemplo cercano, el único de los incluidos en la presente Tesis del que verdaderamente se ha podido tener un conocimiento profundo tanto por el resultado de su análisis a partir de una investigación de carácter científico, como por la experiencia personal del mismo vivida desde niña, al ser antigua alumna del centro. Tanto en este ejemplo concreto como en el resto de casos analizados la metodología para lograr la educación integral del individuo, reproduciendo el mito de la caverna de Platón revisado a través del Emilio roussoniano, se fundamenta en el contacto directo con el exterior, promoviendo un nuevo modo de vida equilibrado y en armonía con la naturaleza, con uno mismo y con los demás. Desde un primer estadio en el que el espacio exterior sustituye literalmente al aula como lugar para la enseñanza, se evoluciona hacia una tipología más compleja en la que los mecanismos de proyecto habrán de fomentar la continuidad entre interior y exterior en los espacios de aprendizaje, así como reproducir en el interior del aula las ventajas del ambiente exterior evitando algunos de sus inconvenientes. Todo ello con diferentes matices según la edad del alumno y la climatología del lugar. A partir del análisis de los casos de estudio generales y del ejemplo concreto de las Teresianas, se pretende sintetizar cuales fueron los mecanismos de proyecto y los principales temas de reflexión que caracterizaron este tipo de escuelas. ABSTRACT "Imposing buildings are not necessary for children to receive a good education, even less in mild climate areas. In the past, Philosophers and Saints used to sit with their disciples in the shade of a tree, passing on their wisdom without the need of reinforced concrete buildings. But they were great men and great minds who could take advantage of the entire universe as a source of teaching material, together with their intelligence and fantasy." This thesis was undertaken with the purpose of carrying out an in depth analysis of the architectural strategies targeting certain types of schools which have a close relationship between architecture and nature. It is said that since the time of Lao Tzu his definition of architecture had not been surpassed: “architecture is not just four walls and a roof, architecture is the arrangement of the spaces and the spirit that is generated within”. But this definition suffered from a serious lack as the “space left outside” is not mentioned. This was exposed by Rafael de La Hoz Arderius in his speech of entry into the Royal Academy of San Fernando10. It was not until the early twentieth century that Western architecture would squarely focus on dematerializing the boundary between the built environment and the “site” in which it is inserted, turning it into an inhabited “place”. The “inside” and the “outside” are no longer understood as two op-posed realities, instead they make way for a continuous space articulated through fruitful in-between situations. However, little has been studied about an architectural typology: the open air school, which was a turning point in the genesis of both educational, as well as modern space. This is therefore the object of this thesis, having two perspectives. On the one hand the development of this type of school is broadly investigated; on the other hand a specific case is introduced: the school of the Teresian association of Alicante, by Rafael de La Hoz and Gerardo Olivares. The development of the open air school is approached through a selection of case studies. These illustrate that the expected social regeneration could not be limited exclusively by the hygienic aspects targeting its first stage, but it was also necessary to strengthen the community spirit of the child as a future citizen. As previously mentioned the Teresian school of Alicante (1964-1966), has been chosen as a specific case study. Despite being quite a bit less renowned than other projects by the same authors, it represents the culmination of their researches about the open air school. In line with the humanist postulates of Richard Neutra’s Biological Realism, Rafael de La Hoz warned about the inability to deal with the arrangement of space if we are unaware of the perceptive process of the human being, addressee of the architecture. This difficulty becomes greater when the addressee is not the adult human but the child, given his different perception of the binomial “space-time” relationship. In this respect the Teresian school of Alicante is in addition a closely related case study, being the only one of the mentioned cases in this thesis allowing to acquire a deep knowledge, both from the results of its analysis coming from a research of scientific nature, as well as the personal experience lived since I was a child, given that I am a former pupil. Both in this case study and in the other analyzed cases, the methodology implemented to achieve the integral education of the individual is based on the direct contact with the exterior, promoting a balanced and in harmony with nature new way of life, including oneself and the others. Thereby it replicates the Plato’s cavern myth and its roussonian review: Emilio. From the first stage in which the exterior literally substitutes the classroom as the educational space, it is evolved towards a more complex typology in which the project strategies have to promote the continuity between inside and outside learning spaces, as well as to reproduce inside the classroom the advantages of the exterior environment avoiding some of its disadvantages; thereto considering the differing matrixes involving the pupil age and the local climatology. From the analysis of the general case studies and the Teresian school, the main project strategies and elements characterizing the open air school have been synthesized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

España se incorporó a la técnica del hormigón armado con más de dos décadas de retraso respecto a Francia o Alemania. En 1890, en Europa se construían ya estructuras de hormigón armado de cierta envergadura y complejidad. En España hubo que esperar hasta 1893 para la primera obra en hormigón armado, que fue un sencillo depósito descubierto en Puigverd (Lérida), ejecutado por el ingeniero militar Francesc Macià con patente Monier. En 1898, de la mano de Hennebique, se empezó la construcción de los dos primeros edificios con estructura de hormigón armado en España. Fueron dos obras puntuales, con proyectos importados de Francia, pero necesarias para introducir de manera definitiva el material. En paralelo, en París, se estaban edificando en hormigón armado la mayoría de los pabellones de la Exposición Universal de 1900. En el cambio de siglo, las construcciones de hormigón armado habían alcanzado ya la madurez proyectual y técnica en Europa. A pesar de la incorporación tardía, se puede constatar por las obras ejecutadas que en un periodo corto de tiempo, entre 1901 y 1906, se alcanzó en España prácticamente el mismo nivel técnico y constructivo que tenían el resto de los países que fueron pioneros en el empleo del hormigón armado. El desarrollo e implantación de una técnica constructiva no es un proceso lineal, y son muchos los factores que intervienen. Las patentes tuvieron una gran importancia en el desarrollo inicial del hormigón armado. Estas ofrecían un producto que funcionaba. Las primeras estructuras de hormigón armado no se calculaban y se construían siguiendo una reglamentación, se compraban. Y el resultado de esa “compra” solía ser, en la mayoría de los casos, satisfactorio. Las patentes vendían sistemas estructurales cuyo funcionamiento estaba corroborado por la experiencia y la pericia de su inventor. Esta investigación parte de la hipótesis de que las patentes sobre cemento y hormigón armado depositadas en España entre 1884 y 1906 fueron uno de los factores que proporcionaron a los técnicos y a las empresas españolas una pericia constructiva sólida en el empleo del hormigón armado. En este trabajo se aborda el estudio del proceso de introducción del hormigón armado en España desde una perspectiva fundamentalmente técnica, incorporando las patentes como una de las razones constructivas que explican su rápida evolución y generalización en un periodo de tiempo breve: 1901-1906. En este proceso se contextualiza y analiza una de las figuras que se considera fundamental en los primeros años del hormigón armado en España, la del ingeniero Juan Manuel de Zafra y Estevan. Esta tesis analiza las patentes de hormigón armado desde el punto de vista estadístico y constructivo. Desde ambas perspectivas se verifica la hipótesis de partida de esta investigación, concluyendo que las patentes fueron una de las razones constructivas de la evolución del hormigón armado en España y de su rápida implantación. ABSTRACT Spain incorporated the reinforced concrete technique more than two decades after France and Germany. In central Europe reinforced concrete structures of considerable size and complexity were being built in 1890, while in Spain it was not until 1893 that the first work, a simple open air water tank, was implemented in Puigverd (Lleida) by the military engineer Francesc Macià with a Monier patent. In 1898 the construction of the first two buildings with reinforced concrete structure in Spain started, with the guidance by Hennebique. They were two isolated cases with projects imported from France, but playing a key role to definitively introduce the material in Spain. In parallel, in Paris, most of the pavilions of the 1900 World Expo were being built in reinforced concrete. At the turn of the century reinforced concrete buildings had reached maturity both as a technology and as a design practice. Despite the late assumption of the material, the works carried out in the very short period between 1901 and 1906 clearly show that Spain reached practically the same technical and constructive level as the other pioneering countries in the use of reinforced concrete. The development and implementation of a constructive technique is never a linear process, there are many factors involved. The patents offered a successful product. Initial reinforced concrete structures were not calculated and built according to regulations, they were bought. And this purchase in most cases was satisfactory for the required use. Patents sold structural systems whose performance was supported by the experience and expertise of its inventor. The hypothesis of this research is based upon the assumption that the cement and concrete patents registered in Spain between 1884 and 1906 were one of the factors that provided Spanish technicians and companies with a solid constructive expertise in the use of reinforced concrete. This investigation studies the introduction of reinforced concrete to Spain from a predominantly technical perspective, incorporating patents as the constructive reason for the rapid evolution and spread in such a short period of time: 1901-1906. Along the way, the role of engineer J. M. de Zafra, generally considered a key agent in the initial years of reinforced concrete in Spain, is contextualized and analyzed. This dissertation analyzes the patents of reinforced concrete from a statistical and constructive point of view. From both perspectives the hypothesis of this research is verified, concluding that patents were one of the constructive reasons for the development of reinforced concrete in Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion of reinforcing steel in concrete due to chloride ingress is one of the main causes of the deterioration of reinforced concrete structures. Structures most affected by such a corrosion are marine zone buildings and structures exposed to de-icing salts like highways and bridges. Such process is accompanied by an increase in volume of the corrosión products on the rebarsconcrete interface. Depending on the level of oxidation, iron can expand as much as six times its original volume. This increase in volume exerts tensile stresses in the surrounding concrete which result in cracking and spalling of the concrete cover if the concrete tensile strength is exceeded. The mechanism by which steel embedded in concrete corrodes in presence of chloride is the local breakdown of the passive layer formed in the highly alkaline condition of the concrete. It is assumed that corrosion initiates when a critical chloride content reaches the rebar surface. The mathematical formulation idealized the corrosion sequence as a two-stage process: an initiation stage, during which chloride ions penetrate to the reinforcing steel surface and depassivate it, and a propagation stage, in which active corrosion takes place until cracking of the concrete cover has occurred. The aim of this research is to develop computer tools to evaluate the duration of the service life of reinforced concrete structures, considering both the initiation and propagation periods. Such tools must offer a friendly interface to facilitate its use by the researchers even though their background is not in numerical simulation. For the evaluation of the initiation period different tools have been developed: Program TavProbabilidade: provides means to carry out a probability analysis of a chloride ingress model. Such a tool is necessary due to the lack of data and general uncertainties associated with the phenomenon of the chloride diffusion. It differs from the deterministic approach because it computes not just a chloride profile at a certain age, but a range of chloride profiles for each probability or occurrence. Program TavProbabilidade_Fiabilidade: carries out reliability analyses of the initiation period. It takes into account the critical value of the chloride concentration on the steel that causes breakdown of the passive layer and the beginning of the propagation stage. It differs from the deterministic analysis in that it does not predict if the corrosion is going to begin or not, but to quantifies the probability of corrosion initiation. Program TavDif_1D: was created to do a one dimension deterministic analysis of the chloride diffusion process by the finite element method (FEM) which numerically solves Fick’second Law. Despite of the different FEM solver already developed in one dimension, the decision to create a new code (TavDif_1D) was taken because of the need to have a solver with friendly interface for pre- and post-process according to the need of IETCC. An innovative tool was also developed with a systematic method devised to compare the ability of the different 1D models to predict the actual evolution of chloride ingress based on experimental measurements, and also to quantify the degree of agreement of the models with each others. For the evaluation of the entire service life of the structure: a computer program has been developed using finite elements method to do the coupling of both service life periods: initiation and propagation. The program for 2D (TavDif_2D) allows the complementary use of two external programs in a unique friendly interface: • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. This program (TavDif_2D) is responsible to decide in each time step when and where to start applying the boundary conditions of fracture mechanics module in function of the amount of chloride concentration and corrosion parameters (Icorr, etc). This program is also responsible to verify the presence and the degree of fracture in each element to send the Information of diffusion coefficient variation with the crack width. • GMSH - an finite element mesh generator and post-processing viewer • OOFEM – a finite element solver. The advantages of the FEM with the interface provided by the tool are: • the flexibility to input the data such as material property and boundary conditions as time dependent function. • the flexibility to predict the chloride concentration profile for different geometries. • the possibility to couple chloride diffusion (initiation stage) with chemical and mechanical behavior (propagation stage). The OOFEM code had to be modified to accept temperature, humidity and the time dependent values for the material properties, which is necessary to adequately describe the environmental variations. A 3-D simulation has been performed to simulate the behavior of the beam on both, action of the external load and the internal load caused by the corrosion products, using elements of imbedded fracture in order to plot the curve of the deflection of the central region of the beam versus the external load to compare with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If reinforced concrete structures are to be safe under extreme impulsive loadings such as explosions, a broad understanding of the fracture mechanics of concrete under such events is needed. Most buildings and infrastructures which are likely to be subjected to terrorist attacks are borne by a reinforced concrete (RC) structure. Up to some years ago, the traditional method used to study the ability of RC structures to withstand explosions consisted on a choice between handmade calculations, affordable but inaccurate and unreliable, and full scale experimental tests involving explosions, expensive and not available for many civil institutions. In this context, during the last years numerical simulations have arisen as the most effective method to analyze structures under such events. However, for accurate numerical simulations, reliable constitutive models are needed. Assuming that failure of concrete elements subjected to blast is primarily governed by the tensile behavior, a constitutive model has been built that accounts only for failure under tension while it behaves as elastic without failure under compression. Failure under tension is based on the Cohesive Crack Model. Moreover, the constitutive model has been used to simulate the experimental structural response of reinforced concrete slabs subjected to blast. The results of the numerical simulations with the aforementioned constitutive model show its ability of representing accurately the structural response of the RC elements under study. The simplicity of the model, which does not account for failure under compression, as already mentioned, confirms that the ability of reinforced concrete structures to withstand blast loads is primarily governed by tensile strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical analysis is a suitable tool in the design of complex reinforced concrete structures under extreme impulsive loadings such as impacts or explosions at close range. Such events may be the result of terrorist attacks. Reinforced concrete is commonly used for buildings and infrastructures. For this reason, the ability to accurately run numerical simulations of concrete elements subjected to blast loading is needed. In this context, reliable constitutive models for concrete are of capital importance. In this research numerical simulations using two different constitutive models for concrete (Continuous Surface Cap Model and Brittle Damage Model) have been carried out using LS-DYNA. Two experimental benchmark tests have been taken as reference. The results of the numerical simulations with the aforementioned constitutive models show different abilities to accurately represent the structural response of the reinforced concrete elements studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 5 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of one of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in reinforced concrete frame buildings with masonry infill walls ranging from 3 to 8 floors in height. Structural as well as non-structural masonry walls suffered important damage that led to redistributions of forces causing in some cases the failure of columns. The importance of the interaction between the structural frames and the infill panels is analyzed by means of non-linear Finite Element Models. The resulting load levels are compared with the member capacities and the changes of the mechanical properties during the seismic event are described and discussed. In the light of the results obtained the observed failure patterns are explained. Some comments are stated concerning the adequacy of the numerical models that are usually used during the design phase for the seismic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earth-quakes of magnitudes 4.6 and 5.2 Mw, causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earth-quake by means of a seismic index Iv that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from Iv=1 (collapse) to about Iv=0.5 (moderate/severe damage)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.